In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded...In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded from L^Pxy (R+) to L^qxδ (R+) with the bound explicitly worked out.展开更多
In this paper, it is proved that the commutator Hβ,b which is generated by the n-dimensional fractional Hardy operator Hβ and b ∈λα (R^n) is bounded from L^p(R^n) to L^q(R^n), where 0 〈 α 〈 1, 1 〈 p, q ...In this paper, it is proved that the commutator Hβ,b which is generated by the n-dimensional fractional Hardy operator Hβ and b ∈λα (R^n) is bounded from L^p(R^n) to L^q(R^n), where 0 〈 α 〈 1, 1 〈 p, q 〈 ∞ and 1/P - 1/q = (α+β)/n. Furthermore, the boundedness of Hβ,b on the homogenous Herz space Kq^α,p(R^n) is obtained.展开更多
In this paper, the boundedness of commutators generated by the n- dimensional fractional Hardy operators and Lipschitz functions on p-adic function spaces are obtained. The authors show that these commutators are boun...In this paper, the boundedness of commutators generated by the n- dimensional fractional Hardy operators and Lipschitz functions on p-adic function spaces are obtained. The authors show that these commutators are bounded on Herz space and Lebesgue space with suitable indexes. Moreover, the commutator of Hardy- Littlewood-Poly~ operator is also considered.展开更多
In this note, the authors show the boundedness of the maximal commutators of Bocher-Riesz operator B^δ and that of maximal commutator Bδ1^b, generated by B^δ and a Lipschitz function b mapping from Mp^q(R^n) into...In this note, the authors show the boundedness of the maximal commutators of Bocher-Riesz operator B^δ and that of maximal commutator Bδ1^b, generated by B^δ and a Lipschitz function b mapping from Mp^q(R^n) into BMO space and also maps from Mp^q(Rn) into L(βn/- q).展开更多
Let 6=(bi,b2,...,bm)be a collection of locally integrable functions and T,the com-mutator of multilinear singular integral operator T.Denote by L(δ)and L(δ(·))the Lipschitz spaces and the variable Lipschitz spa...Let 6=(bi,b2,...,bm)be a collection of locally integrable functions and T,the com-mutator of multilinear singular integral operator T.Denote by L(δ)and L(δ(·))the Lipschitz spaces and the variable Lipschitz spaces,respectively.The main purpose of this paper is to establish some new characterizations of the(variable)Lipschitz spaces in terms of the boundedness of multilinear commutator T∑b in the context of the variable exponent Lebesgue spaces,that is,the authors give the necessary and sufficient conditions for bj(j=1,2,...,m)to be L(δ)or L(δ(·))via the boundedness of multilinear commutator from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces.The authors do so by applying the Fourier series technique and some pointwise esti-mate for the commutators.The key tool in obtaining such pointwise estimate is a certain generalization of the classical sharp maximal operator.展开更多
In this note, the authors prove that the commutator Tb, generated by θ-type Calderon-Zygmund operator T and a Lipschitz function b is bounded from LP(R^n) intoLip(β_n/p)(R^n) and also maps from Ln/β (R^n) i...In this note, the authors prove that the commutator Tb, generated by θ-type Calderon-Zygmund operator T and a Lipschitz function b is bounded from LP(R^n) intoLip(β_n/p)(R^n) and also maps from Ln/β (R^n) into BMO(R^n).展开更多
In this paper, we discuss the boundedness of commutators of high dimensional Hausdorff operator He on Herz type spaces. In addition, central BMO estimates for such commutators are also presented.
The boundedness of maximal Bochner-Riesz operator B^δ* and that of maximal commutator B^bδ*, generated by this operator and Lipschitz function on the classical Morrey space and generalized Morrey space are establi...The boundedness of maximal Bochner-Riesz operator B^δ* and that of maximal commutator B^bδ*, generated by this operator and Lipschitz function on the classical Morrey space and generalized Morrey space are established.展开更多
Let L=-div(A▽) be a second order divergence form elliptic operator with bounded measurable coefficients in R^(n).We establish weighted L^(p) norm inequalities for commutators generated by √L and Lipschitz functions,...Let L=-div(A▽) be a second order divergence form elliptic operator with bounded measurable coefficients in R^(n).We establish weighted L^(p) norm inequalities for commutators generated by √L and Lipschitz functions,where the range of p is different from(1,∞),and we isolate the right class of weights introduced by Auscher and Martell.In this work,we use good-λ inequality with two parameters through the weighted boundedness of Riesz transforms ▽L^(-1/2).Our result recovers,in some sense,a previous result of Hofmann.展开更多
In this paper,the boundedness for the multilinear commutators of Bochner-Riesz operator is considered.We prove that the multilinear commutators generated by Bochner-Riesz operator and Lipschitz function are bounded fr...In this paper,the boundedness for the multilinear commutators of Bochner-Riesz operator is considered.We prove that the multilinear commutators generated by Bochner-Riesz operator and Lipschitz function are bounded from Lp(Rn)into ∧˙(β-np)(Rn)and from Lnβ(Rn)into BMO(Rn).展开更多
In this paper, the authors obtain a necessary and sufficient condition for the LP bound-edness of commutators generated by Bochner-Riesz operators below a critical index and Lipschitz functions in two dimensional case...In this paper, the authors obtain a necessary and sufficient condition for the LP bound-edness of commutators generated by Bochner-Riesz operators below a critical index and Lipschitz functions in two dimensional case. The authors also discuss a similar problem for higher dimensions.展开更多
Let L = -div(AV) be a second order divergence form elliptic operator, and A be an accretive, n × n matrix with bounded measurable complex coefficients in R^n. We obtain the Lp bounds for the commutator generate...Let L = -div(AV) be a second order divergence form elliptic operator, and A be an accretive, n × n matrix with bounded measurable complex coefficients in R^n. We obtain the Lp bounds for the commutator generated by the Kato square root v/L and a Lipschitz function, which recovers a previous result of Calderon, by a different method. In this work, we develop a new theory for the commutators associated to elliptic operators with Lipschitz function. The theory of the commutator with Lipschitz function is distinguished from the analogous elliptic operator theory.展开更多
基金Supported in part by the Natural Science Foundation of China under the Grant 10771221Natural Science Foundation of Beijing under the Grant 1092004
文摘In this paper, we establish two weighted integral inequalities for commutators of fractional Hardy operators with Besov-Lipschitz functions. The main result is that this kind of commutator, denoted by H^ab, is bounded from L^Pxy (R+) to L^qxδ (R+) with the bound explicitly worked out.
基金The NSF (Q2008A01) of Shandong,Chinathe NSF (10871024) of China
文摘In this paper, it is proved that the commutator Hβ,b which is generated by the n-dimensional fractional Hardy operator Hβ and b ∈λα (R^n) is bounded from L^p(R^n) to L^q(R^n), where 0 〈 α 〈 1, 1 〈 p, q 〈 ∞ and 1/P - 1/q = (α+β)/n. Furthermore, the boundedness of Hβ,b on the homogenous Herz space Kq^α,p(R^n) is obtained.
基金The NSF(11261055)of Chinathe NSF(2012211B28,2011211A005)of Xinjiangthe Open Foundation Project(2012ZDXK002)of Key Disciplines in Xinjiang
文摘In this paper, the boundedness of commutators generated by the n- dimensional fractional Hardy operators and Lipschitz functions on p-adic function spaces are obtained. The authors show that these commutators are bounded on Herz space and Lebesgue space with suitable indexes. Moreover, the commutator of Hardy- Littlewood-Poly~ operator is also considered.
基金Supported by NNSF (10961015, 10871173)Supported by JXNSF (2008 Gzs0051,GJJ08169)
文摘In this note, the authors show the boundedness of the maximal commutators of Bocher-Riesz operator B^δ and that of maximal commutator Bδ1^b, generated by B^δ and a Lipschitz function b mapping from Mp^q(R^n) into BMO space and also maps from Mp^q(Rn) into L(βn/- q).
基金Supported by the National Natural Science Foundation of China(Grant No.11571160)the Research Funds for the Educational Committee of Heilongjiang(Grant No.2019-KYYWF-0909)the Reform and Development Foundation for Local Colleges and Universities of the Central Government(Grant No.2020YQ07)。
文摘Let 6=(bi,b2,...,bm)be a collection of locally integrable functions and T,the com-mutator of multilinear singular integral operator T.Denote by L(δ)and L(δ(·))the Lipschitz spaces and the variable Lipschitz spaces,respectively.The main purpose of this paper is to establish some new characterizations of the(variable)Lipschitz spaces in terms of the boundedness of multilinear commutator T∑b in the context of the variable exponent Lebesgue spaces,that is,the authors give the necessary and sufficient conditions for bj(j=1,2,...,m)to be L(δ)or L(δ(·))via the boundedness of multilinear commutator from products of variable exponent Lebesgue spaces to variable exponent Lebesgue spaces.The authors do so by applying the Fourier series technique and some pointwise esti-mate for the commutators.The key tool in obtaining such pointwise estimate is a certain generalization of the classical sharp maximal operator.
基金Supported by NSFC(10571014)NSFC(10571156)+1 种基金the Doctor Foundation of Jxnu (2443)the Natural Science Foundation of Jiangxi province(2008GZS0051)
文摘In this note, the authors prove that the commutator Tb, generated by θ-type Calderon-Zygmund operator T and a Lipschitz function b is bounded from LP(R^n) intoLip(β_n/p)(R^n) and also maps from Ln/β (R^n) into BMO(R^n).
基金supported by NNSF of China(No.11271330)NNSF of Zhejiang(No.Y604563)PRSF ofZhejiang(No.BSH1302046)
文摘In this paper, we discuss the boundedness of commutators of high dimensional Hausdorff operator He on Herz type spaces. In addition, central BMO estimates for such commutators are also presented.
基金Supported by NSFC(10571014),NSFC(10571156)the growth foundation of JXNU (1983)the doctor founda-tion of JXNU.
文摘The boundedness of maximal Bochner-Riesz operator B^δ* and that of maximal commutator B^bδ*, generated by this operator and Lipschitz function on the classical Morrey space and generalized Morrey space are established.
基金supported by NSFC(1187109611471033)+4 种基金supported by NSFC(113710571147103311571160)SRFDP(20130003110003)the Fundamental Research Funds for the Central Universities(2014KJJCA10)。
文摘Let L=-div(A▽) be a second order divergence form elliptic operator with bounded measurable coefficients in R^(n).We establish weighted L^(p) norm inequalities for commutators generated by √L and Lipschitz functions,where the range of p is different from(1,∞),and we isolate the right class of weights introduced by Auscher and Martell.In this work,we use good-λ inequality with two parameters through the weighted boundedness of Riesz transforms ▽L^(-1/2).Our result recovers,in some sense,a previous result of Hofmann.
基金Supported by the National Natural Science Foundation of China (Grant No.10371087)Natural Science Foundation of Anhui Province (Grant No.07021019)+2 种基金Education Committee of Anhui Province (Grant Nos.KJ2011A138 KJ2009B097 KJ2010B127)
文摘In this paper,the boundedness for the multilinear commutators of Bochner-Riesz operator is considered.We prove that the multilinear commutators generated by Bochner-Riesz operator and Lipschitz function are bounded from Lp(Rn)into ∧˙(β-np)(Rn)and from Lnβ(Rn)into BMO(Rn).
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 10571014)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20040027001)
文摘In this paper, the authors obtain a necessary and sufficient condition for the LP bound-edness of commutators generated by Bochner-Riesz operators below a critical index and Lipschitz functions in two dimensional case. The authors also discuss a similar problem for higher dimensions.
基金supported by NSF of China(Grant No.11471033)supported by NSF of China(Grant Nos.11371057,11571160)+4 种基金NCET of China(Grant No.NCET-11-0574)the Fundamental Research Funds for the Central Universities(FRF-TP-12-006B)the Fundamental Research Funds for the Central Universities(Grant No.2014KJJCA10)SRFDP of China(Grant No.20130003110003)supported by NSF(Grant No.DMS 1101244)
文摘Let L = -div(AV) be a second order divergence form elliptic operator, and A be an accretive, n × n matrix with bounded measurable complex coefficients in R^n. We obtain the Lp bounds for the commutator generated by the Kato square root v/L and a Lipschitz function, which recovers a previous result of Calderon, by a different method. In this work, we develop a new theory for the commutators associated to elliptic operators with Lipschitz function. The theory of the commutator with Lipschitz function is distinguished from the analogous elliptic operator theory.