A feature extraction for latent fault detection and failure modes classification method of board-level package subjected to vibration loadings is presented for prognostics and health management(PHM) of electronics usi...A feature extraction for latent fault detection and failure modes classification method of board-level package subjected to vibration loadings is presented for prognostics and health management(PHM) of electronics using adaptive spectrum kurtosis and kernel probability distance clustering. First, strain response data of electronic components is filtered by empirical mode decomposition(EMD) method based on maximum spectrum kurtosis(SK), and fault symptom vector is developed by computing and reconstructing the envelope spectrum. Second, nonlinear fault symptom data is mapped and clustered in sparse Hilbert space using Gaussian radial basis kernel probabilistic distance clustering method. Finally, the current state of board level package is estimated by computing the membership probability of its envelope spectrum. The experimental results demonstrated that the method can detect and classify the latent failure mode of board level package effectively before it happened.展开更多
Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
面向电子设备故障预测与健康管理(Prognostics and Health Management,PHM),基于自适应谱峭度与核概率距离聚类提出一种振动载荷下板级封装潜在故障特征提取与模式辨识方法.首先,基于最大谱峭度原则利用经验模态分解的方法对电子组件的...面向电子设备故障预测与健康管理(Prognostics and Health Management,PHM),基于自适应谱峭度与核概率距离聚类提出一种振动载荷下板级封装潜在故障特征提取与模式辨识方法.首先,基于最大谱峭度原则利用经验模态分解的方法对电子组件的应变响应数据进行滤波,计算并重构包含潜在故障信息的包络谱形成故障征兆向量;其次,应用高斯径向基核函数概率距离方法,将非线性故障征兆数据映射到高维Hilbert空间,对其进行聚类分析形成表征板级封装健康状态与各故障模式的类中心;最后,根据实时监测的板级封装的包络谱数据计算与各中心的概率距离,判断其所属的状态从而实现对封装故障模式的早期辨识.通过试验分析,该方法可以有效辨识与预测板级封装即将发生的故障模式,为实现电子设备PHM提供了一种新式的思路与手段.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51201182)the Aeronautical Science Foundation of China(Grant No.20142896022)
文摘A feature extraction for latent fault detection and failure modes classification method of board-level package subjected to vibration loadings is presented for prognostics and health management(PHM) of electronics using adaptive spectrum kurtosis and kernel probability distance clustering. First, strain response data of electronic components is filtered by empirical mode decomposition(EMD) method based on maximum spectrum kurtosis(SK), and fault symptom vector is developed by computing and reconstructing the envelope spectrum. Second, nonlinear fault symptom data is mapped and clustered in sparse Hilbert space using Gaussian radial basis kernel probabilistic distance clustering method. Finally, the current state of board level package is estimated by computing the membership probability of its envelope spectrum. The experimental results demonstrated that the method can detect and classify the latent failure mode of board level package effectively before it happened.
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
文摘面向电子设备故障预测与健康管理(Prognostics and Health Management,PHM),基于自适应谱峭度与核概率距离聚类提出一种振动载荷下板级封装潜在故障特征提取与模式辨识方法.首先,基于最大谱峭度原则利用经验模态分解的方法对电子组件的应变响应数据进行滤波,计算并重构包含潜在故障信息的包络谱形成故障征兆向量;其次,应用高斯径向基核函数概率距离方法,将非线性故障征兆数据映射到高维Hilbert空间,对其进行聚类分析形成表征板级封装健康状态与各故障模式的类中心;最后,根据实时监测的板级封装的包络谱数据计算与各中心的概率距离,判断其所属的状态从而实现对封装故障模式的早期辨识.通过试验分析,该方法可以有效辨识与预测板级封装即将发生的故障模式,为实现电子设备PHM提供了一种新式的思路与手段.