期刊文献+
共找到436篇文章
< 1 2 22 >
每页显示 20 50 100
Double DQN Method For Botnet Traffic Detection System
1
作者 Yutao Hu Yuntao Zhao +1 位作者 Yongxin Feng Xiangyu Ma 《Computers, Materials & Continua》 SCIE EI 2024年第4期509-530,共22页
In the face of the increasingly severe Botnet problem on the Internet,how to effectively detect Botnet traffic in realtime has become a critical problem.Although the existing deepQnetwork(DQN)algorithminDeep reinforce... In the face of the increasingly severe Botnet problem on the Internet,how to effectively detect Botnet traffic in realtime has become a critical problem.Although the existing deepQnetwork(DQN)algorithminDeep reinforcement learning can solve the problem of real-time updating,its prediction results are always higher than the actual results.In Botnet traffic detection,although it performs well in the training set,the accuracy rate of predicting traffic is as high as%;however,in the test set,its accuracy has declined,and it is impossible to adjust its prediction strategy on time based on new data samples.However,in the new dataset,its accuracy has declined significantly.Therefore,this paper proposes a Botnet traffic detection system based on double-layer DQN(DDQN).Two Q-values are designed to adjust the model in policy and action,respectively,to achieve real-time model updates and improve the universality and robustness of the model under different data sets.Experiments show that compared with the DQN model,when using DDQN,the Q-value is not too high,and the detectionmodel has improved the accuracy and precision of Botnet traffic.Moreover,when using Botnet data sets other than the test set,the accuracy and precision of theDDQNmodel are still higher than DQN. 展开更多
关键词 DQN DDQN deep reinforcement learning botnet detection feature classification
在线阅读 下载PDF
The Machine Learning Ensemble for Analyzing Internet of Things Networks:Botnet Detection and Device Identification
2
作者 Seung-Ju Han Seong-Su Yoon Ieck-Chae Euom 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1495-1518,共24页
The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a re... The rapid proliferation of Internet of Things(IoT)technology has facilitated automation across various sectors.Nevertheless,this advancement has also resulted in a notable surge in cyberattacks,notably botnets.As a result,research on network analysis has become vital.Machine learning-based techniques for network analysis provide a more extensive and adaptable approach in comparison to traditional rule-based methods.In this paper,we propose a framework for analyzing communications between IoT devices using supervised learning and ensemble techniques and present experimental results that validate the efficacy of the proposed framework.The results indicate that using the proposed ensemble techniques improves accuracy by up to 1.7%compared to single-algorithm approaches.These results also suggest that the proposed framework can flexibly adapt to general IoT network analysis scenarios.Unlike existing frameworks,which only exhibit high performance in specific situations,the proposed framework can serve as a fundamental approach for addressing a wide range of issues. 展开更多
关键词 Internet of Things machine learning traffic analysis botnet detection device identification
在线阅读 下载PDF
An Optimized Approach to Deep Learning for Botnet Detection and Classification for Cybersecurity in Internet of Things Environment
3
作者 Abdulrahman Alzahrani 《Computers, Materials & Continua》 SCIE EI 2024年第8期2331-2349,共19页
The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent ... The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process. 展开更多
关键词 botnet detection internet of things gorilla troops optimizer hyperparameter tuning intrusion detection system
在线阅读 下载PDF
Monitoring Peer-to-Peer Botnets:Requirements,Challenges,and Future Works 被引量:1
4
作者 Arkan Hammoodi Hasan Kabla Mohammed Anbar +2 位作者 Selvakumar Manickam Alwan Ahmed Abdulrahman Alwan Shankar Karuppayah 《Computers, Materials & Continua》 SCIE EI 2023年第5期3375-3398,共24页
The cyber-criminal compromises end-hosts(bots)to configure a network of bots(botnet).The cyber-criminals are also looking for an evolved architecture that makes their techniques more resilient and stealthier such as P... The cyber-criminal compromises end-hosts(bots)to configure a network of bots(botnet).The cyber-criminals are also looking for an evolved architecture that makes their techniques more resilient and stealthier such as Peer-to-Peer(P2P)networks.The P2P botnets leverage the privileges of the decentralized nature of P2P networks.Consequently,the P2P botnets exploit the resilience of this architecture to be arduous against take-down procedures.Some P2P botnets are smarter to be stealthy in their Commandand-Control mechanisms(C2)and elude the standard discovery mechanisms.Therefore,the other side of this cyberwar is the monitor.The P2P botnet monitoring is an exacting mission because the monitoring must care about many aspects simultaneously.Some aspects pertain to the existing monitoring approaches,some pertain to the nature of P2P networks,and some to counter the botnets,i.e.,the anti-monitoring mechanisms.All these challenges should be considered in P2P botnet monitoring.To begin with,this paper provides an anatomy of P2P botnets.Thereafter,this paper exhaustively reviews the existing monitoring approaches of P2P botnets and thoroughly discusses each to reveal its advantages and disadvantages.In addition,this paper groups the monitoring approaches into three groups:passive,active,and hybrid monitoring approaches.Furthermore,this paper also discusses the functional and non-functional requirements of advanced monitoring.In conclusion,this paper ends by epitomizing the challenges of various aspects and gives future avenues for better monitoring of P2P botnets. 展开更多
关键词 P2P networks botnet P2P botnet botnet monitoring HONEYPOT crawlers
在线阅读 下载PDF
利用多维观测序列的KCFM混合模型检测新型P2P botnet 被引量:3
5
作者 康健 宋元章 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2010年第5期520-523,共4页
提出了一种新颖的综合考虑多维观测序列的实时检测模型——KCFM。通过抽取新型分散式P2Pbotnet的多个特征构成多维观测序列,使用离散Kalman滤波算法发现流量异常变化,将Multi-chart CUSUM作为差异放大器提高检测精度。实验表明,基于多... 提出了一种新颖的综合考虑多维观测序列的实时检测模型——KCFM。通过抽取新型分散式P2Pbotnet的多个特征构成多维观测序列,使用离散Kalman滤波算法发现流量异常变化,将Multi-chart CUSUM作为差异放大器提高检测精度。实验表明,基于多维观测序列的KCFM模型能够有效地检测新型P2Pbotnet。 展开更多
关键词 P2Pbotnet 离散Kalman滤波 Multi-chartCUSUM
原文传递
网络恶意程序“Botnet”的检测技术的分析 被引量:1
6
作者 倪红彪 《煤炭技术》 CAS 北大核心 2011年第12期172-173,共2页
目前Botnet技术发展最为快速,不论是对网络安全运行还是用户数据安全的保护来说,Botnet都是极具威胁的隐患。介绍了Botnet技术的同时也对Botnet检测技术进行了研究,对几种主要的Botnet检测技术进行了深入分析。
关键词 botnet 安全 检测技术
原文传递
蜜罐先知型半分布式P2P Botnet的构建及检测方法
7
作者 谢静 谭良 周明天 《计算机工程与应用》 CSCD 北大核心 2011年第7期89-92,共4页
蜜罐技术在僵尸网络(botnet)的防御和检测中扮演着重要的角色。攻击者可能会利用已有的基于蜜罐防御技术的漏洞,即防御者配置蜜罐要担当一定的责任,不允许蜜罐参与真实的攻击,进而构建出可以躲避蜜罐的botnet。针对这一问题,提出了攻击... 蜜罐技术在僵尸网络(botnet)的防御和检测中扮演着重要的角色。攻击者可能会利用已有的基于蜜罐防御技术的漏洞,即防御者配置蜜罐要担当一定的责任,不允许蜜罐参与真实的攻击,进而构建出可以躲避蜜罐的botnet。针对这一问题,提出了攻击者利用认证sensor组建的蜜罐先知型半分布式P2P botnet,针对此类botnet,提出了用高交互性蜜罐和低交互性蜜罐相结合的双重蜜罐检测技术,并与传统蜜罐技术做了比较。理论分析表明,该检测方法能够有效地弥补蜜罐防御技术的漏洞,提高了蜜罐先知型半分布式P2P botnet的检出率。 展开更多
关键词 半分布式P2P botnet 蜜罐先知 双重蜜罐 检测模型
在线阅读 下载PDF
基于流角色检测P2P botnet
8
作者 宋元章 何俊婷 +2 位作者 张波 王俊杰 王安邦 《通信学报》 EI CSCD 北大核心 2012年第S1期262-269,共8页
提出了一种基于流角色的实时检测P2P botnet的模型,该模型从流本身的特性出发,使其在检测P2Pbotnet时处于不同的角色,以发现P2P botnet的本质异常和攻击异常,同时考虑到了网络应用程序对检测的影响。为进一步提高检测精度,提出了一种基... 提出了一种基于流角色的实时检测P2P botnet的模型,该模型从流本身的特性出发,使其在检测P2Pbotnet时处于不同的角色,以发现P2P botnet的本质异常和攻击异常,同时考虑到了网络应用程序对检测的影响。为进一步提高检测精度,提出了一种基于滑动窗口的实时估算Hurst指数的方法,并采用Kaufman算法来动态调整阈值。实验表明,该模型能有效检测新型P2P botnet。 展开更多
关键词 P2Pbotnet 自相似性 multi-chartCUSUM Kaufman
在线阅读 下载PDF
半分布式P2P Botnet的检测方法研究
9
作者 谢静 谭良 《计算机应用研究》 CSCD 北大核心 2009年第10期3925-3928,共4页
Botnet近来已经是网络安全中最为严重的威胁之一,过去出现的Botnet大多数是基于IRC机制,检测方法也大都是针对这种类型的。随着P2P技术的广泛应用,半分布式P2P Botnet已经成为一种新的网络攻击手段。由于半分布式P2P Botnet的servent bo... Botnet近来已经是网络安全中最为严重的威胁之一,过去出现的Botnet大多数是基于IRC机制,检测方法也大都是针对这种类型的。随着P2P技术的广泛应用,半分布式P2P Botnet已经成为一种新的网络攻击手段。由于半分布式P2P Botnet的servent bot的分布范围大、网络直径宽而冗余度小,造成的危害已越来越大,对半分布式的Botnet的检测研究具有现实意义。阐述了半分布式P2P Botnet的定义、功能结构与工作机制,重点分析了目前半分布式P2P Botnet几种流行的检测方法,并进行了对比;最后,对半分布式P2P Botnet检测方法的发展趋势进行了展望。 展开更多
关键词 半分布P2P botnet 检测模型 蜜罐 流量分析 钩子
在线阅读 下载PDF
Botnet技术现状及发展趋势探讨 被引量:1
10
作者 傅务谨 《襄樊学院学报》 2009年第8期42-45,共4页
Botnet(僵尸网络)是对互联网安全最严重的威胁之一.分析了目前Botnet的结构及其技术现状,阐述了Botnet分类、检测方法,最后对Botnet的发展趋势进行了概述并提出相应的应对策略.
关键词 botnet 网络安全 P2P
在线阅读 下载PDF
基于Snort的Botnet网络检测系统设计研究
11
作者 曾斯 《中国新技术新产品》 2023年第16期21-23,共3页
Botnet网络作为极具威胁的攻击类型,往往被用来发动大规模网络破坏活动。在Botnet网络中,为了保持服务器的隐蔽性、可用性,与域名关联的IP地址需要不停变动,而传统检测系统针对组织Botnet网络攻击显然已失效。因此,为了有效识别未知、... Botnet网络作为极具威胁的攻击类型,往往被用来发动大规模网络破坏活动。在Botnet网络中,为了保持服务器的隐蔽性、可用性,与域名关联的IP地址需要不停变动,而传统检测系统针对组织Botnet网络攻击显然已失效。因此,为了有效识别未知、潜伏的Botnet网络,该文设计了一种基于Snort的Botnet网络检测系统,并与传统检测系统进行比较。结果表明,该系统可以实时监测网络流量,从而快速检测攻击行为,检测正确率较高,具有良好的扩展性、可移植性。 展开更多
关键词 SNORT botnet网络 流量分析 聚类分析
在线阅读 下载PDF
基于IRC协议的BotNet性能研究 被引量:2
12
作者 王岩 单洪 蔡铭 《安徽大学学报(自然科学版)》 CAS 北大核心 2006年第6期26-28,共3页
首先简单介绍了BotNet的基本概念、构建原理及其危害,然后模拟互联网环境针对当前流行的两种bot程序分别进行了实验,并重点对其DDOS攻击性能进行研究,对得到的数据进行对比,最后总结分析BotNet发展的趋势.
关键词 botnet IRC协议 bot计算机 DDOS
在线阅读 下载PDF
基于对等网协议的BotNet防御系统的设计
13
作者 方新丽 《电脑知识与技术》 2016年第5期30-31,共2页
BotNet(僵尸网络)具有安全隐蔽、稳定可靠的特性,如今已成为网络攻击的工具,给网络安全来严峻的考验。为了更好地防御僵尸网络带来的危害,保证网络的安全,首先分析了基于对等网协议的BotNet的发展历程和工作过程,根据其工作特性,设计... BotNet(僵尸网络)具有安全隐蔽、稳定可靠的特性,如今已成为网络攻击的工具,给网络安全来严峻的考验。为了更好地防御僵尸网络带来的危害,保证网络的安全,首先分析了基于对等网协议的BotNet的发展历程和工作过程,根据其工作特性,设计出一个基于对等网协议的Bot Net防御系统[1]。 展开更多
关键词 对等网 协议 botnet 网络安全 防御系统 设计
在线阅读 下载PDF
BotNet病毒检测与预防的研究
14
作者 贾雅娟 《长春师范学院学报(自然科学版)》 2011年第2期67-71,共5页
本文研究基于僵尸网络的DDoS特征,分析了僵尸网络病毒BotNet的特点与控制机制,通过蜜网和日志分析方法检测DDoS,并使用CWSandbox对仿真的僵尸网络进行分析,检测出其比较典型的行为特征。
关键词 DDOS botnet 安全防御
在线阅读 下载PDF
BotNet病毒检测与预防的研究
15
作者 陈程 《计算机光盘软件与应用》 2011年第3期51-51,共1页
分布式拒绝服务攻击是网络攻击中最为常见的一种恶意攻击方式,给网络用户带来了巨大的影响和不可估量的经济损失。及时有效地检测DDoS的攻击是一项艰巨而又必须的工作。
关键词 DDOS botnet 安全防御
在线阅读 下载PDF
基于Light-BotNet的激光点云分类研究 被引量:5
16
作者 雷根华 王蕾 张志勇 《电子技术应用》 2022年第6期84-88,97,共6页
三维点云在机器人与自动驾驶中都有着普遍的应用,深度学习在二维图像上的研究成果显著,但是如何利用深度学习识别不规则的三维点云,仍然是一个开放性的问题。目前大场景点云自身数据的复杂性,点云扫描距离的变化造成点的分布不均匀,噪... 三维点云在机器人与自动驾驶中都有着普遍的应用,深度学习在二维图像上的研究成果显著,但是如何利用深度学习识别不规则的三维点云,仍然是一个开放性的问题。目前大场景点云自身数据的复杂性,点云扫描距离的变化造成点的分布不均匀,噪声和异常点引起的挑战性依然存在。针对于现有的深度学习网络框架对于激光点云数据的分类效率不高以及分类精度低的问题,提出一种基于激光点云特征图像与Light-BotNet相结合的CNN-Transform框架。该框架在于通过对点云数据进行特征提取,以相邻的特征点构造点云特征图像作为网络框架的输入,最后以Light-BotNet为网络框架模型进行点云分类训练。实验结果表明,该方法与现有的多数点云分类方法相比,能够较好地提升激光点云的分类效率以及分类精度。 展开更多
关键词 点云特征图像 botnet TRANSFORM CNN 激光点云分类
在线阅读 下载PDF
一种p2p Botnet在线检测方法研究 被引量:10
17
作者 柴胜 胡亮 梁波 《电子学报》 EI CAS CSCD 北大核心 2011年第4期906-912,共7页
文章详细分析了p2p僵尸网络的生命周期以及网络特征,利用改进的SPRINT决策树和相似度度量函数,提出了一种新的在线综合检测方法,并论述了虚拟机环境搭建、原型系统设计和实验结果分析.实验结果表明,检测方法是可行的,具有较高的效率和... 文章详细分析了p2p僵尸网络的生命周期以及网络特征,利用改进的SPRINT决策树和相似度度量函数,提出了一种新的在线综合检测方法,并论述了虚拟机环境搭建、原型系统设计和实验结果分析.实验结果表明,检测方法是可行的,具有较高的效率和可靠性. 展开更多
关键词 僵尸网络 对等网络 检测
在线阅读 下载PDF
一种新型P2P Botnet的分析与检测 被引量:1
18
作者 周永嘉 庄洪林 张毓森 《计算机安全》 2008年第7期16-19,共4页
Botnet是一种新型网络攻击方式,它为攻击者提供了灵活高效的命令与控制机制,对Internet安全造成了巨大的威胁。该文概要介绍了Botnet技术,分析了基于P2P技术的Botnet的特点,并对一种新型P2P Botnet进行了深入的分析和研究,提出了对新型P... Botnet是一种新型网络攻击方式,它为攻击者提供了灵活高效的命令与控制机制,对Internet安全造成了巨大的威胁。该文概要介绍了Botnet技术,分析了基于P2P技术的Botnet的特点,并对一种新型P2P Botnet进行了深入的分析和研究,提出了对新型P2P Botnet的检测方法。 展开更多
关键词 botnet BOT P2P 命令与控制 检测
在线阅读 下载PDF
An Adaptive Push-Styled Command and Control Mechanism in Mobile Botnets 被引量:6
19
作者 CHEN Wei GONG Peihua +1 位作者 YU Le YANG Geng 《Wuhan University Journal of Natural Sciences》 CAS 2013年第5期427-434,共8页
The mobile botnet, developed from the traditional PC-based botnets, has become a practical underlying trend. In this paper, we design a mobile botnet, which exploits a novel command and control (CC) strategy named P... The mobile botnet, developed from the traditional PC-based botnets, has become a practical underlying trend. In this paper, we design a mobile botnet, which exploits a novel command and control (CC) strategy named Push-Styled CC. It utilizes Google cloud messaging (GCM) service as the botnet channel. Compared with traditional botnet, Push-Styled CC avoids direct communications between botmasters and bots, which makes mobile botnets more stealthy and resilient. Since mobile devices users are sensitive to battery power and traffic consumption, Push- Styled botnet also applies adaptive network connection strategy to reduce traffic consumption and cost. To prove the efficacy of our design, we implemented the prototype of Push-Style CC in Android. The experiment results show that botnet traffic can be concealed in legal GCM traffic with low traffic cost. 展开更多
关键词 mobile botnet push style Google cloud messaging (GCM) adaptive connection
原文传递
DNNBoT: Deep Neural Network-Based Botnet Detection and Classification 被引量:9
20
作者 Mohd Anul Haq Mohd Abdul Rahim Khan 《Computers, Materials & Continua》 SCIE EI 2022年第4期1729-1750,共22页
The evolution and expansion of IoT devices reduced human efforts,increased resource utilization, and saved time;however, IoT devices createsignificant challenges such as lack of security and privacy, making them morev... The evolution and expansion of IoT devices reduced human efforts,increased resource utilization, and saved time;however, IoT devices createsignificant challenges such as lack of security and privacy, making them morevulnerable to IoT-based botnet attacks. There is a need to develop efficientand faster models which can work in real-time with efficiency and stability. The present investigation developed two novels, Deep Neural Network(DNN) models, DNNBoT1 and DNNBoT2, to detect and classify well-knownIoT botnet attacks such as Mirai and BASHLITE from nine compromisedindustrial-grade IoT devices. The utilization of PCA was made to featureextraction and improve effectual and accurate Botnet classification in IoTenvironments. The models were designed based on rigorous hyperparameterstuning with GridsearchCV. Early stopping was utilized to avoid the effects ofoverfitting and underfitting for both DNN models. The in-depth assessmentand evaluation of the developed models demonstrated that accuracy andefficiency are some of the best-performed models. The novelty of the presentinvestigation, with developed models, bridge the gaps by using a real datasetwith high accuracy and a significantly lower false alarm rate. The results wereevaluated based on earlier studies and deemed efficient at detecting botnetattacks using the real dataset. 展开更多
关键词 botnet network monitoring machine learning deep neural network IoT threat
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部