Blue-light emitting materials with high purity and good luminous efficiency have attracted considerable attention from both academic and commercial researchers for their great potential use in OLEDs.In order to improv...Blue-light emitting materials with high purity and good luminous efficiency have attracted considerable attention from both academic and commercial researchers for their great potential use in OLEDs.In order to improve thermal stability and lower the possibility to generate fluorescence quenching of organic blue-light emitting materials formed by carbazole,a linear organic molecule containing carbazole and triarylamine group,named N4,N4’-bis(9-ethyl-9H-carbazol-3-yl)-N4,N4’-diphenyl-[1,1’-biphenyl]-4,4’-diamine(DPECB),was synthesized via the Buchwald-Hartwig reaction.The structure of DPECB was characterized by nuclear magnetic resonance(NMR)and infrared spectroscopy.The UV-Vis absorption spectrum shows that DPECB exhibits two strong absorption peaks in the near ultraviolet region(around 305 and 355 nm).The fluorescence emission spectrum indicates that DPECB displays blue light emission both in solution(428-445 nm)and solid-state(466 nm).Additionally,DPECB shows clearly aggregation-induced emission enhancement(AIEE)effect in the mixed solvent of DMF/H2O.As the thermogravimetric analysis shows,DPECB demonstrates excellent thermostability with a 5%decomposition temperature of 457℃owing to the introduction of triarylamine group.The electrochemical property of DPECB was studied through cyclic voltammetry,and its HOMO and LUMO energy levels are-5.27 and-2.25 eV,respectively.These results indicate that DPECB is a promising blue-light emitting material with potential commercial applications.展开更多
In this paper, we report on the first observation of blue-light emission bands from europium-doped tantalum pentoxide (Ta2O5:Eu) thin films prepared using a simple co-sputtering method. We prepared four specimens from...In this paper, we report on the first observation of blue-light emission bands from europium-doped tantalum pentoxide (Ta2O5:Eu) thin films prepared using a simple co-sputtering method. We prepared four specimens from one as-deposited sample, and we subsequently annealed them at 700°C, 800°C, 900°C, or 1000°C for 20 min. Four remarkable photoluminescence (PL) peaks at wavelengths of 600, 620, 650, and 700 nm due to the 5D0→7F1, 5D0→7F2, 5D0→7F3, and 5D0→7F4 transitions of Eu3+ were observed from all the specimens, and blue PL peaks around a wavelength of 450 nm were also observed from the specimens annealed at 800°C, 900°C, and 1000°C. The blue PL peaks seem to be originated from the 4f65d1→4f7 transition of Eu2+. Both Eu3+ and Eu2+ ions seem to exist in our Ta2O5:Eu co-sputtered thin films annealed at temperatures from 800°C to 1000°C. Such Ta2O5:Eu co-sputtered thin films seem to be used as multi-functional coating films having both anti-reflection and down-conversion effects for realizing high-efficiency silicon solar cells.展开更多
Rare earth-doped oxide thin-film phosphors may emerge as an alternate choice for the blue phosphor, due to their chemical and thermal stability in high vacuum and absence of corrosive gas emission under electron bomba...Rare earth-doped oxide thin-film phosphors may emerge as an alternate choice for the blue phosphor, due to their chemical and thermal stability in high vacuum and absence of corrosive gas emission under electron bombardment. The blue phosphors in this study were activated in air at temperatures suitable for glass substrates, which have been used in a number of applications. The effects of rare earth ions and oxide hosts on the blue-light-emitting properties of phosphors are discussed. In addition, novel blue-light emission was observed in certain typical undoped wide bandgap oxides. The luminescence of the oxides depends on the growth and annealing conditions under different atmospheres, suggesting that it is associated with the presence of oxygen vacancies. Radiative processes related to oxygen vacancies were also presented.展开更多
基金Fundamental Research Program of Shanxi Province(20210302124637,202203021211102,J20230701)。
文摘Blue-light emitting materials with high purity and good luminous efficiency have attracted considerable attention from both academic and commercial researchers for their great potential use in OLEDs.In order to improve thermal stability and lower the possibility to generate fluorescence quenching of organic blue-light emitting materials formed by carbazole,a linear organic molecule containing carbazole and triarylamine group,named N4,N4’-bis(9-ethyl-9H-carbazol-3-yl)-N4,N4’-diphenyl-[1,1’-biphenyl]-4,4’-diamine(DPECB),was synthesized via the Buchwald-Hartwig reaction.The structure of DPECB was characterized by nuclear magnetic resonance(NMR)and infrared spectroscopy.The UV-Vis absorption spectrum shows that DPECB exhibits two strong absorption peaks in the near ultraviolet region(around 305 and 355 nm).The fluorescence emission spectrum indicates that DPECB displays blue light emission both in solution(428-445 nm)and solid-state(466 nm).Additionally,DPECB shows clearly aggregation-induced emission enhancement(AIEE)effect in the mixed solvent of DMF/H2O.As the thermogravimetric analysis shows,DPECB demonstrates excellent thermostability with a 5%decomposition temperature of 457℃owing to the introduction of triarylamine group.The electrochemical property of DPECB was studied through cyclic voltammetry,and its HOMO and LUMO energy levels are-5.27 and-2.25 eV,respectively.These results indicate that DPECB is a promising blue-light emitting material with potential commercial applications.
文摘In this paper, we report on the first observation of blue-light emission bands from europium-doped tantalum pentoxide (Ta2O5:Eu) thin films prepared using a simple co-sputtering method. We prepared four specimens from one as-deposited sample, and we subsequently annealed them at 700°C, 800°C, 900°C, or 1000°C for 20 min. Four remarkable photoluminescence (PL) peaks at wavelengths of 600, 620, 650, and 700 nm due to the 5D0→7F1, 5D0→7F2, 5D0→7F3, and 5D0→7F4 transitions of Eu3+ were observed from all the specimens, and blue PL peaks around a wavelength of 450 nm were also observed from the specimens annealed at 800°C, 900°C, and 1000°C. The blue PL peaks seem to be originated from the 4f65d1→4f7 transition of Eu2+. Both Eu3+ and Eu2+ ions seem to exist in our Ta2O5:Eu co-sputtered thin films annealed at temperatures from 800°C to 1000°C. Such Ta2O5:Eu co-sputtered thin films seem to be used as multi-functional coating films having both anti-reflection and down-conversion effects for realizing high-efficiency silicon solar cells.
基金Project supported bythe National Natural Science Foundation of China (50472079)
文摘Rare earth-doped oxide thin-film phosphors may emerge as an alternate choice for the blue phosphor, due to their chemical and thermal stability in high vacuum and absence of corrosive gas emission under electron bombardment. The blue phosphors in this study were activated in air at temperatures suitable for glass substrates, which have been used in a number of applications. The effects of rare earth ions and oxide hosts on the blue-light-emitting properties of phosphors are discussed. In addition, novel blue-light emission was observed in certain typical undoped wide bandgap oxides. The luminescence of the oxides depends on the growth and annealing conditions under different atmospheres, suggesting that it is associated with the presence of oxygen vacancies. Radiative processes related to oxygen vacancies were also presented.