英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及...英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及译者在各自翻译过程中扮演的不同角色,为民族志翻译相关研究作学理探讨。展开更多
In the heart of southern China,Nanning is set to host the 22nd China-ASEAN Expo(CAEXPO)from September 17 to 21,again turning the city into a global hub for trade,innovation,and economic cooperation.This year marks the...In the heart of southern China,Nanning is set to host the 22nd China-ASEAN Expo(CAEXPO)from September 17 to 21,again turning the city into a global hub for trade,innovation,and economic cooperation.This year marks the beginning of a new chapter in regional collaboration with the debut of the Blue Economy Pavilion—an exhibition space dedicated to the fast-growing and increasingly crucial marine economy.展开更多
Prussian blue/Prussian blue analogues(PB/PBAs)are widely used in electrochemistry and materials science fields,such as electrochemical energy storage,catalysis,water purification,and electromagnetic wave absorption,ow...Prussian blue/Prussian blue analogues(PB/PBAs)are widely used in electrochemistry and materials science fields,such as electrochemical energy storage,catalysis,water purification,and electromagnetic wave absorption,owing to their 3D open-framework structure,tunable composition,and large specific surface area.However,the co-precipitation method,which is most suitable for large-scale production of PB/PBAs,often leads to the formation of numerous crystal defects and severe lattice distortion,which significantly affects the structural stability of PB/PBAs.To obtain high-crystallinity PB/PBAs with targeted properties,precise synthesis considering various detailed conditions is especially needed.Herein,this review comprehensively summarizes the fundamental structure composition,key factors in synthesis,and applications in the electrochemistry of PB/PBAs.Unlike previous reports,this review elucidates the relationship between the physicochemical properties of PB/PBAs and their structural composition,with a particular focus on revealing the mechanisms and significance of specific preparation methods during the synthesis process,including reactant concentration,chelating agent,aging,atmosphere,temperature,and drying conditions,for achieving the precise fabrication of PB/PBAs nanomaterials.As PB/PBAs gradually become materials for multidimensional applications,we urge greater attention to the unique properties of PB/PBAs that are sustained by high crystallinity and stable crystal structures.This will effectively ensure the maximization of their advantages in practical applications.展开更多
The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are...The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.展开更多
Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion...Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.展开更多
The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methaner...The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.展开更多
Exploring modification methods for enhancing the adsorption performance of biochar-based adsorbents for effective removal of methylene blue(MB),biochar-loaded CeO_(2)nanoparticles(Ce/BC)were synthesized by pomelo peel...Exploring modification methods for enhancing the adsorption performance of biochar-based adsorbents for effective removal of methylene blue(MB),biochar-loaded CeO_(2)nanoparticles(Ce/BC)were synthesized by pomelo peels through co-precipitation combined with the pyrolysis method.Ce/BC showed a higher specific surface area and disorder degree than that of BC.The 0.5Ce/BC(mass ratio of Ce(NO_(3))_(3)·6H_(2)O/BC=0.5/1)showed the best performance to adsorption of MB solution at different reaction conditions(MB concentration,Ce/BC composites dosage,and initial pH).Adsorption kinetics and equilibrium isotherms were well-described with a pseudo-first-order equation and Langmuir model,respectively.In addition,the maximum adsorption capacity of 0.5Ce/BC for MB was 105.68 mg·g^(-1)at 328 K.The strong adsorption was attributed to multi-interactions including pore filling,π-πinteractions,electrostatic interaction,and hydrogen bonding between the composites and MB.This work demonstrated that the modified pomelo peels biochar,as a green promising material with cost-effectiveness,exhibited a great potential for broad application prospectively to dyeing-contaminated wastewater treatment.展开更多
Marine pollution is a well-recognized phenomenon that has many negative effects on the marine environment.The effects of marine pollution are due to the discharge of hazardous materials,toxins,or other pollutants into...Marine pollution is a well-recognized phenomenon that has many negative effects on the marine environment.The effects of marine pollution are due to the discharge of hazardous materials,toxins,or other pollutants into the marine environment,which includes seas,estuaries,oceans,and other water bodies,and this unwanted input affects the blue economy.The blue economy,which includes industries and research associated with marine and ocean resources,is often affected by marine pollution on multiple levels,such as economic costs,direct resource impacts,health risks,and infrastructure damage.In one report,the pollution-related issues in many countries were estimated at 9 t/inh and clean-up costs between$12 to$160/t.More extensive pollution mitigation projects might take up to 15 years to conclude and cost up to$500/t.To better understand the role of marine pollution and its impact on the blue economy,some key parameters are discussed as follows:the role of biofouling,volatile organic compounds,the impact of metals,anionic pollutants,and antifouling coatings.The review findings also highlight the impact of marine pollution on ecosystems and associated economic activities,which could be reduced through measures such as better international cooperation,waste management,and the development of sustainable practices.Related information on the strategies and policies that could be adopted for sustainable blue economy are stated after each section.展开更多
ⅢThe superior adaptability of Prussian blue analogues(PBAs)in interacting with potassium ions has shifted research focus toward their potential application as cathodes of potassium-ion batteries(PIBs).The large inter...ⅢThe superior adaptability of Prussian blue analogues(PBAs)in interacting with potassium ions has shifted research focus toward their potential application as cathodes of potassium-ion batteries(PIBs).The large interstitial space formed between metal ions and–C≡N–in PBAs can accommodate large-radius K^(+).However,the rapid nucleation in the co-precipitation synthesis process of PBAs induces many lattice defects of[M(CN)_(6)]^(4-)vacancies(V_([M–C≡N])),interstitial and coordinated H_(2)O molecules,which will directly lead to performance degradation.Moreover,originating from various transition metal elements in low/high-spin electron configuration states,PBAs exhibit diverse electrochemical behaviors,such as low reaction kinetics of low-spin iron(Ⅱ),Jahn-Teller distortion and dissolution of manganese(Ⅲ),and electrochemical inertness of nickel(Ⅱ)and copper(Ⅱ).Here,we summarize recently reported structures and properties of PBAs,classifying them based on the types of transition metals(iron,cobalt,manganese,copper,nickel)employed.Advanced synthesis strategies,including control engineering of crystallinity based on H_(2)O molecules and V_([M–C≡N]),were discussed.Also,the approaches for enhancing the electrochemical performance of PBAs were highlighted.Finally,the challenges and prospects towards the future development of PBAs are put forward.The review is expected to provide technical and theoretical support for the design of high-performance PBAs.展开更多
The removal of cesium-137(^(137)Cs)from nuclear wastewater remains crucial due to its radioactivity and high solubility in water,which pose serious risk to human health and the environment.Aiming at selective capture ...The removal of cesium-137(^(137)Cs)from nuclear wastewater remains crucial due to its radioactivity and high solubility in water,which pose serious risk to human health and the environment.Aiming at selective capture of Cs^(+) from wastewater,a core-shell adsorbent,Prussian blue analog@y-alumina(PBA@Al_(2)O_(3))pellets were synthesized using the hydrothermal-stepwise deposition method.The coreshell PBA@Al_(2)O_(3)pellets showcased a PBA loading of 25%and demonstrated a maximum adsorption capacity of 15.65 mg·g^(-1).The adsorption data was consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model.It effectively reduced bulk Cs^(+) concentrations from an initial 6.62 mg·L^(-1)to 2 μg·L^(-1),achieving a removal efficiency of 99.97%and distribution coefficient(Kd)of 1.265×10^(6)ml·g^(-1),surpassing the performance of other PBA-based materials.The material also indicated good mechanical properties and cesium ion removal rates of 99.7%across a wide pH range(1.82 to 11.12).Furthermore,PBA@Al_(2)O_(3)exhibited consistent removal rate of over 99%and good selectivity(SF=50-1600)towards Cs^(+) even in the presence of interfering ions such as Na^(+),K^(+),Mg^(2+),and Ca^(2+)ions.The Kd(Cs^(+))for PBA@Al2O3 in simulated seawater and groundwater were 9.92×10^(3)and 2.23×10^(4)ml·g^(-1),where the removal rates reached 96.1%and 98.2%,respectively.XPS confirms that the adsorption mechanism is the ion exchange between Cs^(+) and K^(+)ions.This study underscores the significant potential of inorganic core-shell pellets adsorbents as promising agents for the selective capture of Cs^(+) from wastewater.展开更多
The issue of light pollution has garnered increased attention recently,largely due to the widespread use of electronic devices.Blue light(BL)holds the highest energy level among visible light and has been extensively ...The issue of light pollution has garnered increased attention recently,largely due to the widespread use of electronic devices.Blue light(BL)holds the highest energy level among visible light and has been extensively researched for its potential to cause damage to the retina.Ferroptosis,a recently identified form of programmed cell death form,has been linked to retinal diseases.However,the connection between BL-induced retinal damage and ferroptosis remains elusive.This study aims to investigate the involvement of ferroptosis in retinal damage under BL exposure and its underlying mechanism.In this study,a mouse retinal damage model and cultured ARPE-19 cells exposed to BL were employed.Various techniques including Haematoxylin-eosin staining,fundus photography,immunostaining,and transmission electron microscopywere employed to examine retinal structure and morphology changes resulting from BL exposure.To identify ferroptosis levels in vitro,we employed DCFH-DA,C11-BODIPY 581/591,and FeRhoNox^(TM)-1 probes.Additionally,real-time PCR and western blotting techniques were used to uncover potential targets in BL-induced ferroptosis.Our study showed that BL exposure can result in iron overload,oxidative stress,evidenced by increased markers TFR1,ACSL4,HO-1 and decreased expression level of SOD2,CAT and ferroptosis-associated gene of GPX4.Interestingly,we found that Deferoxamine mesylate,a compound capable of chelating excess Fe2+caused by BL,effectively mitigated lipid peroxidation,and alleviated retinal damage both in vivo and in vitro.The discoveries will advance our knowledge of BL-induced retinal damage.展开更多
Methylene blue(MB)is a versatile medicine with a long history of use in various medical applications,including dye,antiseptic,and treatment for methemoglobinemia.It has a role in vasoconstriction,methemoglobin reducti...Methylene blue(MB)is a versatile medicine with a long history of use in various medical applications,including dye,antiseptic,and treatment for methemoglobinemia.It has a role in vasoconstriction,methemoglobin reduction,inhibition of guanylate cyclase,and anti-inflammatory effects.We reviewed PubMed and Google Scholar literature for relevant studies on MB in intensive care unit(ICU).We created search criteria using a combination of free text words,including MB,critical care,intensive care,sepsis,surgery,pharmacokinetics,and pharmacodynamics.Relevant articles published in the English language were analyzed and incorporated.MB has been used in managing patients with refractory shock,including septic shock,vasoplegic shock,surgical patients,and some instances of drug-induced hypotension.In conclusion,MB in the ICU is a promising medication for sepsis and vasoplegic shock.Further research with randomized trials on its long-term safety in the ICU,time of initiation,dose,and duration is necessary.展开更多
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre...To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.展开更多
Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a on...Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure(Fe–NiO/NiMoO_(4) nanoparticles/nanofibers).The strategy commences with the meticulous treatment of NiMoO_(4) nanofibers,utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds.In this process,[Fe(CN)_(6)]^(3-)anions react with the NiMoO_(4) host layer to form a steady NiFe PBA.Subsequently,the surface/interface reconstituted NiMoO_(4) nanofibers undergo direct oxidation,leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO_(4) one-dimensional heterostructure.The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction.Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway.This pivotal transformation directly lowers the activation energy barrier,thereby significantly enhancing electron transfer efficiency.展开更多
During obesity treatment,clinicians have been burdened by the ever-increasing number of patients and the side effects of drug treatment.Finding new plant-derived active ingredients as an intervention for obesity has b...During obesity treatment,clinicians have been burdened by the ever-increasing number of patients and the side effects of drug treatment.Finding new plant-derived active ingredients as an intervention for obesity has become a research focus.In this study,Plackett-Burman and Central Composite Design experiments,plant-wide target metabolomics technology,simulated human colon fermentation test,and cell experiment in vitro were successively used to investigate the effects of fermented and unfermented polyphenols(FP and UP,respectively)of blue honeysuckle on obesity.After the optimization of the response surface method,polyphenol content((1878.08±14.53)mg/100 g)increased by 2.63 times after Lactobacillus rhamnosus 6224 and Saccharomyces cerevisiae W5 mixed fermentation.There were 23 significantly different metabolites were observed in FP and UP.Of them,7 different metabolites were significantly and positively correlated with short-chain fatty acids(SCFAs),whereas negatively correlated with lipopolysaccharides(LPS).The contents of these 7 metabolites were significantly increased in FP.Furthermore,the effects of FP and UP on the SCFA biosynthesis pathway were different.Cell experiments revealed that polyphenols can significantly promote the secretion of gastrointestinal endogenous hormones and insulin and inhibit interleukin-6 levels.Linear regression analysis revealed SCFAs had a positive regulatory effect on glycolipid metabolism,whereas LPS had a negative effect.Overall,these crucial findings provide an economical and simple method for obtaining blue honeysuckle polyphenols and laying a theoretical foundation for its application in the therapeutic intervention against obesity.展开更多
By the random distribution of metals in a single phase,entropy engineering is applied to construct dense neighboring active centers with diverse electronic and geometric structures,realizing the continuous optimizatio...By the random distribution of metals in a single phase,entropy engineering is applied to construct dense neighboring active centers with diverse electronic and geometric structures,realizing the continuous optimization of multiple primary reactions for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).Many catalysts developed through entropy engineering have been built in nearly equimolar ratios to pursue high entropy,hindering the identification of the active sites and potentially diluting the concentration of real active sites while weakening their electronic interactions with reaction intermediates.Herein,this work proposes an entropy-engineering strategy in metal nanoparticle-embedded nitrogen carbon electrocatalysts,implemented by entropy-engineered Prussian blue analogs(PBA)as precursors to enhance the catalytic activity of primary Cu-Fe active sites.Through the introduction of the micro-strains driven by entropy engineering,density functional theory(DFT)calculations and geometric phase analysis(GPA)using Lorentz electron microscopy further elucidate the optimization of the adsorption/desorption of intermediates.Furthermore,the multi-dimensional morphology and the size diminishment of the nanocrystals serve to expand the electrochemical area,maximizing the catalytic activity for both ORR and OER.Notably,the Zn-air battery assembled with CuFeCoNiZn-NC operated for over 1300 h with negligible decay.This work presents a paradigm for the design of low-cost electrocatalysts with entropy engineering for multi-step reactions.展开更多
The blue economy-encompassing sustainable use of ocean resources for economic growth,improved livelihoods,and ocean ecosystem health-has emerged as a strategic frontier in global cooperation.Among the most dynamic par...The blue economy-encompassing sustainable use of ocean resources for economic growth,improved livelihoods,and ocean ecosystem health-has emerged as a strategic frontier in global cooperation.Among the most dynamic partnerships in this domain is the evolving relationship between Portugal and China,two nations geographically distant but united by a shared maritime heritage and a forward-looking vision for ocean sustainability.展开更多
With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Elec...With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.展开更多
White light illumination is essential in daily life,however,the substantial amount of blue light it contains can damage human eyes.Therefore,it is important to block this high-energy blue light to protect visual healt...White light illumination is essential in daily life,however,the substantial amount of blue light it contains can damage human eyes.Therefore,it is important to block this high-energy blue light to protect visual health.In this study,yellow-emitting carbon dots(CDs)with a quantum yield exceeding 94%were synthesized using citric acid and urea.These CDs effectively absorb blue light.By incorporating them into polystyrene,multiple films termed CDs-based blue light blocking films(CBFs)were developed,each offering different levels of blue light absorption.These CBFs exhibited excellent transparency and efficient blue light filtering capabilities.This study highlights the potential of high quantum yield CDs,which specifically absorb blue light,as foundational materials for developing light-blocking solutions against highenergy short-wavelength light.展开更多
Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicit...Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicity,low price and other advantages,but at the same time confront with critical challenges such as capacity attenuation and volume expansion.Here,a universal synthesis method of MO/MFe_(2)O_(4)(M=Ni,Cu,Zn)nanomaterials derived from Prussian blue analogues(PBAs)is proposed based on the self-sacrificing template strategy of metal-organic frameworks(MOFs).The calcined products retain the porous structure and small particle size of PBAs,which shorten the ion transport path,provide abundant electroactive sites and void space,effectively alleviate the effect of volume expansion,and improve the reaction kinetics.These MO/MFe_(2)O_(4)anode materials exhibit excellent cyclic reversibility and stability during repeated charge/discharge process,among which,NiO/NiFe_(2)O_(4) shows the best electrochemical performance,retaining a superior specific capacity of 1301.7 mAh g^(-1) following 230 cycles at 0.1 A g^(-1).In addition,the lithium adsorption capacity of the materials was further explored through the calculation of density functional theory(DFT).The research perspectives and strategies reported in this paper have strong universality and offer innovative insights for the synthesis of alternative advanced materials.展开更多
文摘英国作家立德夫人的民族志作品The Land of the Blue Gown有多个汉语无本回译译本。本文选取其中三个代表性译本,尝试从民族志翻译理论出发,通过对不同译本的语言风格传达和文化信息还原进行比较,总结各无本回译译本的翻译策略选择以及译者在各自翻译过程中扮演的不同角色,为民族志翻译相关研究作学理探讨。
文摘In the heart of southern China,Nanning is set to host the 22nd China-ASEAN Expo(CAEXPO)from September 17 to 21,again turning the city into a global hub for trade,innovation,and economic cooperation.This year marks the beginning of a new chapter in regional collaboration with the debut of the Blue Economy Pavilion—an exhibition space dedicated to the fast-growing and increasingly crucial marine economy.
基金financial support from the National Natural Science Foundation of China(NSFC,Grant No.52202253,52372193,and 22293041)Natural Science Foundation of Jiangsu Province(Grant No.BK20220914)Large Instrument and Equipment Sharing Fund of Nanjing University of Aeronautics and Astronautics。
文摘Prussian blue/Prussian blue analogues(PB/PBAs)are widely used in electrochemistry and materials science fields,such as electrochemical energy storage,catalysis,water purification,and electromagnetic wave absorption,owing to their 3D open-framework structure,tunable composition,and large specific surface area.However,the co-precipitation method,which is most suitable for large-scale production of PB/PBAs,often leads to the formation of numerous crystal defects and severe lattice distortion,which significantly affects the structural stability of PB/PBAs.To obtain high-crystallinity PB/PBAs with targeted properties,precise synthesis considering various detailed conditions is especially needed.Herein,this review comprehensively summarizes the fundamental structure composition,key factors in synthesis,and applications in the electrochemistry of PB/PBAs.Unlike previous reports,this review elucidates the relationship between the physicochemical properties of PB/PBAs and their structural composition,with a particular focus on revealing the mechanisms and significance of specific preparation methods during the synthesis process,including reactant concentration,chelating agent,aging,atmosphere,temperature,and drying conditions,for achieving the precise fabrication of PB/PBAs nanomaterials.As PB/PBAs gradually become materials for multidimensional applications,we urge greater attention to the unique properties of PB/PBAs that are sustained by high crystallinity and stable crystal structures.This will effectively ensure the maximization of their advantages in practical applications.
基金Project supported by the Key R&D Projects in Hunan Province(2021SK2047,2022NK2044)Science and Technology Innovation Program of Hunan Province(2022WZ1022)Superior Youth Project of the Science Research Project of Hunan Provincial Department of Education(22B0211)。
文摘The technology of solid-state lighting has developed for decades in various industries.Phosphor,as an element part,determines the application domain of lighting products.For instance,blue and redemitting phosphors are required in the process of plant supplementing light,arrow-band emitting phosphors are applied to backlight displays,etc.In this work,a Bi^(3+)-activated blue phosphor was obtained in a symmetrical and co mpact crystal structure of Gd3Sb07(GSO).Then,the co-doping strategy of alkali metal ions(Li^(+),Na^(+),and K^(+))was used to optimize the performance.The result shows that the photoluminescence intensity is increased by 2.1 times and 1.3 times respectively by introducing Li~+and K^(+)ions.Not only that,it also achieves narrow-band emitting with the full width of half-maximum(FWHM)reaching 42 nm through Na^(+)doping,and its excitation peak position also shifts from 322 to 375 nm,which can be well excited by near-ultraviolet(NUV)light emitting diode(LED)chips(365 nm).Meanwhile,the electroluminescence spectrum of GSO:0.6 mol%Bi^(3+),3 wt%Na^(+)matches up to 93.39%of the blue part of the absorption spectrum of chlorophyll a.In summary,the Bi^(3+)-activated blue phosphor reported in this work can synchronously meet the requirements of plant light replenishment and field emission displays.
基金financial support from the Special Funds for the Cultivation of Guangdong College Students’Scientific and Technological Innovation(“Climbing Program”Special Funds,pdjh2023b0145)the Scientific Research Innovation Project of Graduate School of South China Normal University(2024KYLX047)financial support from the Australian Research Council,Centre for Materials Science,Queensland University of Technology.
文摘Lithium-ion batteries(LIBs)have dominated the portable electronic and electrochemical energy markets since their commercialisation,whose high cost and lithium scarcity have prompted the development of other alkali-ion batteries(AIBs)including sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).Owing to larger ion sizes of Na^(+)and K^(+)compared with Li^(+),nanocomposites with excellent crystallinity orientation and well-developed porosity show unprecedented potential for advanced lithium/sodium/potassium storage.With enticing open rigid framework structures,Prussian blue analogues(PBAs)remain promising self-sacrificial templates for the preparation of various nanocomposites,whose appeal originates from the well-retained porous structures and exceptional electrochemical activities after thermal decomposition.This review focuses on the recent progress of PBA-derived nanocomposites from their fabrication,lithium/sodium/potassium storage mechanism,and applications in AIBs(LIBs,SIBs,and PIBs).To distinguish various PBA derivatives,the working mechanism and applications of PBA-templated metal oxides,metal chalcogenides,metal phosphides,and other nanocomposites are systematically evaluated,facilitating the establishment of a structure–activity correlation for these materials.Based on the fruitful achievements of PBA-derived nanocomposites,perspectives for their future development are envisioned,aiming to narrow down the gap between laboratory study and industrial reality.
文摘The objective of this study is to propose an optimal plant design for blue hydrogen production aboard a liquefiednatural gas(LNG)carrier.This investigation focuses on integrating two distinct processes—steam methanereforming(SMR)and ship-based carbon capture(SBCC).The first refers to the common practice used to obtainhydrogen from methane(often derived from natural gas),where steam reacts with methane to produce hydrogenand carbon dioxide(CO_(2)).The second refers to capturing the CO_(2) generated during the SMR process on boardships.By capturing and storing the carbon emissions,the process significantly reduces its environmental impact,making the hydrogen production“blue,”as opposed to“grey”(which involves CO_(2) emissions without capture).For the SMR process,the analysis reveals that increasing the reformer temperature enhances both the processperformance and CO_(2) emissions.Conversely,a higher steam-to-carbon(s/c)ratio reduces hydrogen yield,therebydecreasing thermal efficiency.The study also shows that preheating the air and boil-off gas(BOG)before theyenter the combustion chamber boosts overall efficiency and curtails CO_(2) emissions.In the SBCC process,puremonoethanolamine(MEA)is employed to capture the CO_(2) generated by the exhaust gases from the SMR process.The results indicate that with a 90%CO_(2) capture rate,the associated heat consumption amounts to 4.6 MJ perkilogram of CO_(2) captured.This combined approach offers a viable pathway to produce blue hydrogen on LNGcarriers while significantly reducing the carbon footprint.
基金supported by Basic scientific research business expense project of colleges and universities directly under Inner Mongolia(2024QNJS127 and 2023QNJS131)Science and Technology Plan Program of Inner Mongolia Autonomous Region(2023YFDZ0031)the Inner Mongolia Natural Science Foundation(2024QN02011).
文摘Exploring modification methods for enhancing the adsorption performance of biochar-based adsorbents for effective removal of methylene blue(MB),biochar-loaded CeO_(2)nanoparticles(Ce/BC)were synthesized by pomelo peels through co-precipitation combined with the pyrolysis method.Ce/BC showed a higher specific surface area and disorder degree than that of BC.The 0.5Ce/BC(mass ratio of Ce(NO_(3))_(3)·6H_(2)O/BC=0.5/1)showed the best performance to adsorption of MB solution at different reaction conditions(MB concentration,Ce/BC composites dosage,and initial pH).Adsorption kinetics and equilibrium isotherms were well-described with a pseudo-first-order equation and Langmuir model,respectively.In addition,the maximum adsorption capacity of 0.5Ce/BC for MB was 105.68 mg·g^(-1)at 328 K.The strong adsorption was attributed to multi-interactions including pore filling,π-πinteractions,electrostatic interaction,and hydrogen bonding between the composites and MB.This work demonstrated that the modified pomelo peels biochar,as a green promising material with cost-effectiveness,exhibited a great potential for broad application prospectively to dyeing-contaminated wastewater treatment.
基金Supported by the President’s International Fellowship Initiative of Chinese Academy of Sciences(No.2024 PVC 0010)。
文摘Marine pollution is a well-recognized phenomenon that has many negative effects on the marine environment.The effects of marine pollution are due to the discharge of hazardous materials,toxins,or other pollutants into the marine environment,which includes seas,estuaries,oceans,and other water bodies,and this unwanted input affects the blue economy.The blue economy,which includes industries and research associated with marine and ocean resources,is often affected by marine pollution on multiple levels,such as economic costs,direct resource impacts,health risks,and infrastructure damage.In one report,the pollution-related issues in many countries were estimated at 9 t/inh and clean-up costs between$12 to$160/t.More extensive pollution mitigation projects might take up to 15 years to conclude and cost up to$500/t.To better understand the role of marine pollution and its impact on the blue economy,some key parameters are discussed as follows:the role of biofouling,volatile organic compounds,the impact of metals,anionic pollutants,and antifouling coatings.The review findings also highlight the impact of marine pollution on ecosystems and associated economic activities,which could be reduced through measures such as better international cooperation,waste management,and the development of sustainable practices.Related information on the strategies and policies that could be adopted for sustainable blue economy are stated after each section.
基金financially supported by research grants from Innovative Research Group Project of National Natural Science Foundation of China(No.52021004)National Key Research and Development Program of China(2022YFB3803300)+2 种基金National Natural Science Foundation of China(62474026 and 62074022)Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX1215,cstc2021jcyj-jqX0015 and CSTB2022NSCQ-MSX1183)the Youth Talent Support Program of Chongqing(CQYC2021059206).
文摘ⅢThe superior adaptability of Prussian blue analogues(PBAs)in interacting with potassium ions has shifted research focus toward their potential application as cathodes of potassium-ion batteries(PIBs).The large interstitial space formed between metal ions and–C≡N–in PBAs can accommodate large-radius K^(+).However,the rapid nucleation in the co-precipitation synthesis process of PBAs induces many lattice defects of[M(CN)_(6)]^(4-)vacancies(V_([M–C≡N])),interstitial and coordinated H_(2)O molecules,which will directly lead to performance degradation.Moreover,originating from various transition metal elements in low/high-spin electron configuration states,PBAs exhibit diverse electrochemical behaviors,such as low reaction kinetics of low-spin iron(Ⅱ),Jahn-Teller distortion and dissolution of manganese(Ⅲ),and electrochemical inertness of nickel(Ⅱ)and copper(Ⅱ).Here,we summarize recently reported structures and properties of PBAs,classifying them based on the types of transition metals(iron,cobalt,manganese,copper,nickel)employed.Advanced synthesis strategies,including control engineering of crystallinity based on H_(2)O molecules and V_([M–C≡N]),were discussed.Also,the approaches for enhancing the electrochemical performance of PBAs were highlighted.Finally,the challenges and prospects towards the future development of PBAs are put forward.The review is expected to provide technical and theoretical support for the design of high-performance PBAs.
基金supported by the Key Reasearch and Development Program of Zhejiang(2022C01029)the National Natural Science Foundation of China(22225802 and 22288102)the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2022KJ3005).
文摘The removal of cesium-137(^(137)Cs)from nuclear wastewater remains crucial due to its radioactivity and high solubility in water,which pose serious risk to human health and the environment.Aiming at selective capture of Cs^(+) from wastewater,a core-shell adsorbent,Prussian blue analog@y-alumina(PBA@Al_(2)O_(3))pellets were synthesized using the hydrothermal-stepwise deposition method.The coreshell PBA@Al_(2)O_(3)pellets showcased a PBA loading of 25%and demonstrated a maximum adsorption capacity of 15.65 mg·g^(-1).The adsorption data was consistent with the pseudo-second-order kinetic model and the Langmuir isotherm model.It effectively reduced bulk Cs^(+) concentrations from an initial 6.62 mg·L^(-1)to 2 μg·L^(-1),achieving a removal efficiency of 99.97%and distribution coefficient(Kd)of 1.265×10^(6)ml·g^(-1),surpassing the performance of other PBA-based materials.The material also indicated good mechanical properties and cesium ion removal rates of 99.7%across a wide pH range(1.82 to 11.12).Furthermore,PBA@Al_(2)O_(3)exhibited consistent removal rate of over 99%and good selectivity(SF=50-1600)towards Cs^(+) even in the presence of interfering ions such as Na^(+),K^(+),Mg^(2+),and Ca^(2+)ions.The Kd(Cs^(+))for PBA@Al2O3 in simulated seawater and groundwater were 9.92×10^(3)and 2.23×10^(4)ml·g^(-1),where the removal rates reached 96.1%and 98.2%,respectively.XPS confirms that the adsorption mechanism is the ion exchange between Cs^(+) and K^(+)ions.This study underscores the significant potential of inorganic core-shell pellets adsorbents as promising agents for the selective capture of Cs^(+) from wastewater.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA16040200)the National Nature Science Foundation of China(Nos.82201194 and 82371084).
文摘The issue of light pollution has garnered increased attention recently,largely due to the widespread use of electronic devices.Blue light(BL)holds the highest energy level among visible light and has been extensively researched for its potential to cause damage to the retina.Ferroptosis,a recently identified form of programmed cell death form,has been linked to retinal diseases.However,the connection between BL-induced retinal damage and ferroptosis remains elusive.This study aims to investigate the involvement of ferroptosis in retinal damage under BL exposure and its underlying mechanism.In this study,a mouse retinal damage model and cultured ARPE-19 cells exposed to BL were employed.Various techniques including Haematoxylin-eosin staining,fundus photography,immunostaining,and transmission electron microscopywere employed to examine retinal structure and morphology changes resulting from BL exposure.To identify ferroptosis levels in vitro,we employed DCFH-DA,C11-BODIPY 581/591,and FeRhoNox^(TM)-1 probes.Additionally,real-time PCR and western blotting techniques were used to uncover potential targets in BL-induced ferroptosis.Our study showed that BL exposure can result in iron overload,oxidative stress,evidenced by increased markers TFR1,ACSL4,HO-1 and decreased expression level of SOD2,CAT and ferroptosis-associated gene of GPX4.Interestingly,we found that Deferoxamine mesylate,a compound capable of chelating excess Fe2+caused by BL,effectively mitigated lipid peroxidation,and alleviated retinal damage both in vivo and in vitro.The discoveries will advance our knowledge of BL-induced retinal damage.
文摘Methylene blue(MB)is a versatile medicine with a long history of use in various medical applications,including dye,antiseptic,and treatment for methemoglobinemia.It has a role in vasoconstriction,methemoglobin reduction,inhibition of guanylate cyclase,and anti-inflammatory effects.We reviewed PubMed and Google Scholar literature for relevant studies on MB in intensive care unit(ICU).We created search criteria using a combination of free text words,including MB,critical care,intensive care,sepsis,surgery,pharmacokinetics,and pharmacodynamics.Relevant articles published in the English language were analyzed and incorporated.MB has been used in managing patients with refractory shock,including septic shock,vasoplegic shock,surgical patients,and some instances of drug-induced hypotension.In conclusion,MB in the ICU is a promising medication for sepsis and vasoplegic shock.Further research with randomized trials on its long-term safety in the ICU,time of initiation,dose,and duration is necessary.
基金Tural Science Foundation of China(No.52274255)the Young Scientists Fund of the National Natural ScienceFoundation of China(No.52404276)+3 种基金Fundamental Re-search Funds for the Central Universities,China(Nos.N2301003,N2201008,N2201004,and N2301025)Liaon-ingRevitalizationTalentsProgram,China(No.XLYC2202028)Postdoctoral Foundation of NortheasternUniversity,Young Elite Scientists Sponsorship Program byChina Association for Science and Technology(No.2022QNRC001)and China Postdoctoral Science Founda-tion(No.2022M720025)。
文摘To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.
基金supported by the National Natural Science Foundation of China(52203257)Natural Science Foundation of Heilongjiang Province(YQ2022B008).
文摘Bimetallic oxides are promising electrocatalysts due to their rich composition,facile synthesis,and favorable stability under oxidizing conditions.This paper innovatively proposes a strategy aimed at constructing a one-dimensional heterostructure(Fe–NiO/NiMoO_(4) nanoparticles/nanofibers).The strategy commences with the meticulous treatment of NiMoO_(4) nanofibers,utilizing in situ etching techniques to induce the formation of Prussian Blue Analog compounds.In this process,[Fe(CN)_(6)]^(3-)anions react with the NiMoO_(4) host layer to form a steady NiFe PBA.Subsequently,the surface/interface reconstituted NiMoO_(4) nanofibers undergo direct oxidation,leading to a reconfiguration of the surface structure and the formation of a unique Fe–NiO/NiMoO_(4) one-dimensional heterostructure.The catalyst showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction.Density functional theory results reveal that the incorporation of Fe as a dopant dramatically reduces the Gibbs free energy associated with the rate-determining step in the oxygen evolution reaction pathway.This pivotal transformation directly lowers the activation energy barrier,thereby significantly enhancing electron transfer efficiency.
基金supported by the Key Program of Heilongjiang Provincial Natural Science Foundation of China(ZD2020C008)the National Natural Science Foundation of China(32071519)+2 种基金the Heilongjiang University Graduate Innovation Research Project(YJSCX2022-031HLJU)the Qiqihar Science and Technology Plan Joint Guidance Project(LSFGG-2022037)Scientific Research Project of Ecological Environment Protection of Heilongjiang Provincial Department of Ecological Environment(HST2022TR004)。
文摘During obesity treatment,clinicians have been burdened by the ever-increasing number of patients and the side effects of drug treatment.Finding new plant-derived active ingredients as an intervention for obesity has become a research focus.In this study,Plackett-Burman and Central Composite Design experiments,plant-wide target metabolomics technology,simulated human colon fermentation test,and cell experiment in vitro were successively used to investigate the effects of fermented and unfermented polyphenols(FP and UP,respectively)of blue honeysuckle on obesity.After the optimization of the response surface method,polyphenol content((1878.08±14.53)mg/100 g)increased by 2.63 times after Lactobacillus rhamnosus 6224 and Saccharomyces cerevisiae W5 mixed fermentation.There were 23 significantly different metabolites were observed in FP and UP.Of them,7 different metabolites were significantly and positively correlated with short-chain fatty acids(SCFAs),whereas negatively correlated with lipopolysaccharides(LPS).The contents of these 7 metabolites were significantly increased in FP.Furthermore,the effects of FP and UP on the SCFA biosynthesis pathway were different.Cell experiments revealed that polyphenols can significantly promote the secretion of gastrointestinal endogenous hormones and insulin and inhibit interleukin-6 levels.Linear regression analysis revealed SCFAs had a positive regulatory effect on glycolipid metabolism,whereas LPS had a negative effect.Overall,these crucial findings provide an economical and simple method for obtaining blue honeysuckle polyphenols and laying a theoretical foundation for its application in the therapeutic intervention against obesity.
基金supported by the National Natural Science Foundation of China(52071083,52231007,12327804,52471224)Zhuhai Fudan Innovation Institute,and the Science and Technology Commission of Shanghai Municipality(23ZR1405000).
文摘By the random distribution of metals in a single phase,entropy engineering is applied to construct dense neighboring active centers with diverse electronic and geometric structures,realizing the continuous optimization of multiple primary reactions for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).Many catalysts developed through entropy engineering have been built in nearly equimolar ratios to pursue high entropy,hindering the identification of the active sites and potentially diluting the concentration of real active sites while weakening their electronic interactions with reaction intermediates.Herein,this work proposes an entropy-engineering strategy in metal nanoparticle-embedded nitrogen carbon electrocatalysts,implemented by entropy-engineered Prussian blue analogs(PBA)as precursors to enhance the catalytic activity of primary Cu-Fe active sites.Through the introduction of the micro-strains driven by entropy engineering,density functional theory(DFT)calculations and geometric phase analysis(GPA)using Lorentz electron microscopy further elucidate the optimization of the adsorption/desorption of intermediates.Furthermore,the multi-dimensional morphology and the size diminishment of the nanocrystals serve to expand the electrochemical area,maximizing the catalytic activity for both ORR and OER.Notably,the Zn-air battery assembled with CuFeCoNiZn-NC operated for over 1300 h with negligible decay.This work presents a paradigm for the design of low-cost electrocatalysts with entropy engineering for multi-step reactions.
文摘The blue economy-encompassing sustainable use of ocean resources for economic growth,improved livelihoods,and ocean ecosystem health-has emerged as a strategic frontier in global cooperation.Among the most dynamic partnerships in this domain is the evolving relationship between Portugal and China,two nations geographically distant but united by a shared maritime heritage and a forward-looking vision for ocean sustainability.
基金supported by the National Natural Science Foundation of China(No.52072217)the National Key Research and Development Program of China(No.2022YFB3807700)+2 种基金the Joint Funds of the Hubei Natural Science Foundation Innovation and Development(No.2022CFD034)Hubei Natural Science Foundation Innovation Group Project(No.2022CFA020)the Major Technological Innovation Project of Hubei Science and Technology Department(No.2019AAA164).
文摘With the rapid development of new energy and the high proportion of new energy connected to the grid,energy storage has become the leading technology driving significant adjustments in the global energy landscape.Electrochemical energy storage,as the most popular and promising energy storage method,has received extensive attention.Currently,the most widely used energy storage method is metal-ion secondary batteries,whose performance mainly depends on the cathode material.Prussian blue analogues(PBAs)have a unique open framework structures that allow quick and reversible insertion/extraction of metal ions such as Na^(+),K^(+),Zn^(2+),Li^(+)etc.,thus attracting widespread attention.The advantages of simple synthesis process,abundant resources,and low cost also distinguish it from its counterparts.Unfortunately,the crystal water and structural defects in the PBAs lattice that is generated during the synthesis process,as well as the low Na content,significantly affect their electrochemical performance.This paper focuses on PBAs’synthesis methods,crystal structure,modification strategies,and their potential applications as cathode materials for various metal ion secondary batteries and looks forward to their future development direction.
基金supported by Medical Science and Technology Research Project of Henan Province(Joint Construction Project)(No.LHGJ20200433)National Natural Science Foundation of China(No.52122308)。
文摘White light illumination is essential in daily life,however,the substantial amount of blue light it contains can damage human eyes.Therefore,it is important to block this high-energy blue light to protect visual health.In this study,yellow-emitting carbon dots(CDs)with a quantum yield exceeding 94%were synthesized using citric acid and urea.These CDs effectively absorb blue light.By incorporating them into polystyrene,multiple films termed CDs-based blue light blocking films(CBFs)were developed,each offering different levels of blue light absorption.These CBFs exhibited excellent transparency and efficient blue light filtering capabilities.This study highlights the potential of high quantum yield CDs,which specifically absorb blue light,as foundational materials for developing light-blocking solutions against highenergy short-wavelength light.
文摘Transition metal oxides(TMOs)have received extensive attention for their unique physical and chemical properties.It is worth noting that Fe-based materials stand out because of their rich natural resources,low toxicity,low price and other advantages,but at the same time confront with critical challenges such as capacity attenuation and volume expansion.Here,a universal synthesis method of MO/MFe_(2)O_(4)(M=Ni,Cu,Zn)nanomaterials derived from Prussian blue analogues(PBAs)is proposed based on the self-sacrificing template strategy of metal-organic frameworks(MOFs).The calcined products retain the porous structure and small particle size of PBAs,which shorten the ion transport path,provide abundant electroactive sites and void space,effectively alleviate the effect of volume expansion,and improve the reaction kinetics.These MO/MFe_(2)O_(4)anode materials exhibit excellent cyclic reversibility and stability during repeated charge/discharge process,among which,NiO/NiFe_(2)O_(4) shows the best electrochemical performance,retaining a superior specific capacity of 1301.7 mAh g^(-1) following 230 cycles at 0.1 A g^(-1).In addition,the lithium adsorption capacity of the materials was further explored through the calculation of density functional theory(DFT).The research perspectives and strategies reported in this paper have strong universality and offer innovative insights for the synthesis of alternative advanced materials.