Accurate identification and effective support of key blocks are crucial for ensuring the stability and safety of rock slopes.The number of structural planes and rock blocks were reduced in previous studies.This impair...Accurate identification and effective support of key blocks are crucial for ensuring the stability and safety of rock slopes.The number of structural planes and rock blocks were reduced in previous studies.This impairs the ability to characterize complex rock slopes accurately and inhibits the identification of key blocks.In this paper,a knowledge-data dually driven paradigm for accurate identification of key blocks in complex rock slopes is proposed.Our basic idea is to integrate key block theory into data-driven models based on finely characterizing structural features to identify key blocks in complex rock slopes accurately.The proposed novel paradigm consists of(1)representing rock slopes as graph-structured data based on complex systems theory,(2)identifying key nodes in the graph-structured data using graph deep learning,and(3)mapping the key nodes of graph-structured data to corresponding key blocks in the rock slope.Verification experiments and real-case applications are conducted by the proposed method.The verification results demonstrate excellent model performance,strong generalization capability,and effective classification results.Moreover,the real case application is conducted on the northern slope of the Yanqianshan Iron Mine.The results show that the proposed method can accurately identify key blocks in complex rock slopes,which can provide a decision-making basis and rational recommendations for effective support and instability prevention of rock slopes,thereby ensuring the stability of rock engineering and the safety of life and property.展开更多
Concrete pavement often experiences accelerated deterioration due to water and chemical ingress through micro-cracks and surface voids.Particularly,the ingress of aggressive agents into the concrete matrix results in ...Concrete pavement often experiences accelerated deterioration due to water and chemical ingress through micro-cracks and surface voids.Particularly,the ingress of aggressive agents into the concrete matrix results in irreversible changes and deterioration on its endurance.Numerous studies unveiled that hydrophobic surface protection could be an inexpensive and effective way of enhancing the durability of concrete.This research work aims to assess the feasibility of bio-cement posttreatment for facilitating hydrophobic surface protection,thus enhancing the performance and durability of concrete blocks.Enzyme induced carbonate precipitation(EICP)is one of the promising bio-cement methods.Concrete blocks casted in four different grades were subjected to EICP treatment with different treatment schemes and recipes of cementation media.The treated blocks were tested for water absorption,ultrasonic pulse velocity(UPV)measurements,unconfined compressive strength(UCS),thermal performance,and scanning electron microscopy(SEM).The results indicated that the concrete blocks subjected to EICP posttreatment showed over a 55%reduction in water absorption,a 15%higher UCS and a 6.7%higher UPV when compared with control blocks.The SEM analysis suggested that the EICP posttreatment could enhance the durability of concrete paving blocks by enabling a layer of calcite on the surface and by plugging the transport pore channels of the concrete.Although most of the posttreatment strategies investigated herein were found to be operative,a better response was seen in the posttreatment by spraying scheme with 0.5 mol/L cementation media(CM).With the successful demonstration,the EICP treatment prior to the use of concrete blocks can be recommended to the pavement construction industry.展开更多
The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributi...The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings.展开更多
The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areex...The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.展开更多
The identification and characterization of concealed in-situ rock blocks on high-steep slope exposures are critical in rock engineering,but remain challenging.This study employs advanced UAV-based photogrammetry to ca...The identification and characterization of concealed in-situ rock blocks on high-steep slope exposures are critical in rock engineering,but remain challenging.This study employs advanced UAV-based photogrammetry to capture high-resolution discontinuity data and develops a fully automated rock block extraction method consisting of three steps:(1)determination of free face and non-free fracture intersections,(2)surface search for rock blocks on free face.and(3)extraction and analysis of rock blocks.This approach simplifies the determination of discontinuity intersections while maintaining high accuracy.By incorporating all types of discontinuities contributing to rock block formation,the method enables precise in-situ rock block identification and extraction.Application to a rock slope in China,produced results consistent with the rock blocks observed in the 3D model,highlighting its accuracy and practical value.展开更多
Traffic-induced ground vibrations cause significant problems for residents and nearby structures.Reducing the effect of these vibrations on the neighboring environment is a key challenge,particularly in urban areas.Th...Traffic-induced ground vibrations cause significant problems for residents and nearby structures.Reducing the effect of these vibrations on the neighboring environment is a key challenge,particularly in urban areas.This study presents both numerical and experimental investigations of the performance of mass scatters for screening ground vibrations.A three-dimensional numerical model is validated and extended to conduct a comparative study on the efficiency of three geotechnical methods of isolation.These methods include trench barriers,waveimpeding blocks(WIBs),and mass scatters.The results showed that mass scatters represent an efficient way of scattering ground vibrations,and their efficiency is mainly related to the weights of mass scatters and their natural frequency,which control the dynamic soil response in the frequency domain.Rigid trench barriers are less effective than soft ones,and their efficiency is more pronounced regarding the WIB.Soft barriers with a depth of an order of half of the wavelength can decrease the vibration levels by up to 50%,which is comparable to the performance of enormous mass scatters.The dimensions of WIBs must be chosen according to the wavelength of incident waves and the cutoff frequency of the topsoil layer.Considering the significant wavelength of traffic-induced vibration,the use of trench barriers or WIBs becomes impractical and expensive;therefore,mass scatters appear to be an efficient and practical solution.展开更多
BACKGROUND Femur fractures are one of the most serious injuries that occur in the older population and are associated with severe pain and increased mortality.The primary objective of this study was to find if there w...BACKGROUND Femur fractures are one of the most serious injuries that occur in the older population and are associated with severe pain and increased mortality.The primary objective of this study was to find if there was a significant difference in pain scores in patients treated with femoral nerve blocks(FNB)compared with patients treated with the standard analgesia protocol.The secondary objective was to find if there was a significant difference in morbidity between the two groups.AIM To evaluate the effectiveness of ultrasound(US)-guided FNB in managing preoperative pain and reducing morbidity in patients with neck femur fractures compared to the standard analgesia protocol.The study seeks to determine whether FNB offers superior outcomes in terms of pain control,rehospitalization rates,and mortality.METHODS This retrospective cohort study included 1577 patients suffering from neck femur fractures.387 patients were treated with a FNB for pain management upon arrival at the emergency department,the rest were treated with standard analgesia.Pain was assessed from electronic medical records using the visual analogue scale(VAS)pre surgery,12-and 24-hour post-surgery.To determine morbidity and mortality during hospitalizations and 6 months after,it was collected from electronic medical records.RESULTS In a cohort of 1577 patients,those receiving US-guided FNB had significantly lower preoperative VAS pain scores(1.46±2.49 vs 1.82±2.59,P=0.001),reduced rehospitalization rates(0.99±1.96 vs 1.46±2.34,P<0.001),and lower mortality(16%vs 32%,P<0.001)compared to standard analgesia.CONCLUSION US guided FNB is more effective for pain management compared with standard analgesia.This method was also found to significantly reduce the risk of morbidity in those patients.展开更多
Real-time monitoring of wellbore stability during drilling is crucial for the early detection of instability and timely interventions.The cause and type of wellbore instability can be identified by analyzing the dropp...Real-time monitoring of wellbore stability during drilling is crucial for the early detection of instability and timely interventions.The cause and type of wellbore instability can be identified by analyzing the dropped blocks brought to the surface by the drilling fluid,enabling preventive measures to be taken.In this study,an image capture system with fully automated sorting and 3D scanning was developed to obtain the complete 3D point cloud data of dropping blocks.The raw data obtained were preprocessed using methods such as format conversion,down sampling,coordinate transformation,statistical filtering,and clustering.Feature extraction algorithms,including the principal component analysis bounding box method,triangular meshing method,triaxial projection method,local curvature method,and model segmentation projection method,were employed,which resulted in the extraction of 32 feature parameters from the point cloud data.An optimal machine learning algorithm was developed by training it with 10 machine learning algorithms and the block data collected in the field.The XGBoost algorithm was then used to optimize the feature parameters and improve the classification model.An intelligent,fully automated feature parameter extraction and classification system was developed and applied to classify the types of falling blocks in 12 sets of drilling field and laboratory experiments and to identify the causes of wellbore instability.An average accuracy of 93.9%was achieved.This system can thus enable the timely diagnosis and implementation of preventive and control measures for wellbore instability in the field.展开更多
On the description of the landscapes of historical blocks in China,this paper proposes the approaches to renovating the historical blocks,including their repairing and reconstruction. It aims at presenting suggestions...On the description of the landscapes of historical blocks in China,this paper proposes the approaches to renovating the historical blocks,including their repairing and reconstruction. It aims at presenting suggestions for the protection and development of historical blocks through analyzing the methods and procedures for repairing and rebuilding the infrastructures and green landscapes in the blocks.展开更多
The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special t...The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special test of three-type corner friction and squeez- ing of real rock specimens, and physical simulation test on the roof key blocks of roof structure as well as the finite element calcula- tion of the corner stress distribution and failure mechanism, the characteristics of friction and squeezing of the roof key blocks comer are revealed. It is found that the friction angle of the roof key blocks corner is the residual friction angle, and the frictional angle of the roof key blocks is 22-32° (average 27°), so the friction coefficient is determined as 0.5. It also found the squeezing strength is less than the uniaxial strength, and the squeezing coefficient of the roof blocks corner is determined as 0.4. Based on the results, the ground control theory can be updated from qualitative analysis to quantitative analysis.展开更多
BACKGROUND Coronavirus disease 2019(COVID-19)caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has resulted in a worldwide health crisis since it first appeared.Numerous studies demonstrated the...BACKGROUND Coronavirus disease 2019(COVID-19)caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has resulted in a worldwide health crisis since it first appeared.Numerous studies demonstrated the virus’s predilection to cardiomyocytes;however,the effects that COVID-19 has on the cardiac conduc-tion system still need to be fully understood.AIM To analyze the impact that COVID-19 has on the odds of major cardiovascular complications in patients with new onset heart blocks or bundle branch blocks(BBB).METHODS The 2020 National Inpatient Sample(NIS)database was used to identify patients admitted for COVID-19 pneumonia with and without high-degree atrioven-tricular blocks(HDAVB)and right or left BBB utilizing ICD-10 codes.The patients with pre-existing pacemakers,suggestive of a prior diagnosis of HDAVB or BBB,were excluded from the study.The primary outcome was inpatient mortality.Secondary outcomes included total hospital charges(THC),the length of hospital stay(LOS),and other major cardiac outcomes detailed in the Results section.Univariate and multivariate regression analyses were used to adjust for confounders with Stata version 17.RESULTS A total of 1058815 COVID-19 hospitalizations were identified within the 2020 NIS database,of which 3210(0.4%)and 17365(1.6%)patients were newly diagnosed with HDAVB and BBB,respectively.We observed a significantly higher odds of in-hospital mortality,cardiac arrest,cardiogenic shock,sepsis,arrythmias,and acute kidney injury in the COVID-19 and HDAVB group.There was no statistically significant difference in the odds of cerebral infarction or pulmonary embolism.Encounters with COVID-19 pneumonia and newly diagnosed BBB had a higher odds of arrythmias,acute kidney injury,sepsis,need for mechanical ventilation,and cardiogenic shock than those without BBB.However,unlike HDAVB,COVID-19 pneumonia and BBB had no significant impact on mortality compared to patients without BBB.CONCLUSION In conclusion,there is a significantly higher odds of inpatient mortality,cardiac arrest,cardiogenic shock,sepsis,acute kidney injury,supraventricular tachycardia,ventricular tachycardia,THC,and LOS in patients with COVID-19 pneumonia and HDAVB as compared to patients without HDAVB.Likewise,patients with COVID-19 pneumonia in the BBB group similarly have a higher odds of supraventricular tachycardia,atrial fibrillation,atrial flutter,ventricular tachycardia,acute kidney injury,sepsis,need for mechanical ventilation,and cardiogenic shock as compared to those without BBB.Therefore,it is essential for healthcare providers to be aware of the possible worse predicted outcomes that patients with new-onset HDAVB or BBB may experience following SARS-CoV-2 infection.展开更多
The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary pat...The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.展开更多
Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model...Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model for this problem is presented. Usinghuman-computer cooperative genetic algorithm (GA) and its hybrid optitation strategies, integratedlayout and connection design schemes of HMB can be automatically optimized. An example is given totestify it.展开更多
In order to decrease both computational complexity and coding time, an improved algorithm for the early detection of all-zero blocks (AZBs) in H. 264/AVC is proposed. The previous AZBs detection algorithms are revie...In order to decrease both computational complexity and coding time, an improved algorithm for the early detection of all-zero blocks (AZBs) in H. 264/AVC is proposed. The previous AZBs detection algorithms are reviewed. Three types of transformed frequency-domain coefficients, which are quantized to zeros, are analyzed. Based on the three types of frequencydomain scaling factors, the corresponding spatial coefficients are derived. Then the Schwarz inequality is applied to the derivation of the three thresholds based on spatial coefficients. Another threshold is set on the basis of the probability distribution of zero coefficients in a block. As a result, an adaptive AZBs detection algorithm is proposed based on the minimum of the former three thresholds and the threshold of zero blocks distribution. The simulation results show that, compared with the existing AZBs detection algorithms, the proposed algorithm achieves a 5% higher detection ratio in AZBs and 4% to 10% computation saving with only 0. 1 dB video quality degradation.展开更多
This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation o...This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.展开更多
The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die...The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software, MAGMAsoft, as an advanced tool for optimizing die design and casting process, was employed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline. A reality check was used to verify the predicted results. Then, the die modification with a different runner system was made by using a CAD software, Unigraphics (UG). The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicates that the enhancement of cavity filling due to the die and process modification minimizes the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and process in comparison with those produced by the original ones.展开更多
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunct...An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.展开更多
he effects of porous hydroxyapatite blocks(PHABs) and an adjunct low-intensity pulsed ultrasound stimulation(LIPUS) on the fusion rate in a rabbit spinal posterolateral fusion(PLF) model were evaluated.Twenty ra...he effects of porous hydroxyapatite blocks(PHABs) and an adjunct low-intensity pulsed ultrasound stimulation(LIPUS) on the fusion rate in a rabbit spinal posterolateral fusion(PLF) model were evaluated.Twenty rabbits underwent PLF with autograft and PHABs were randomly assigned to two groups:treated group with 20 min LIPUS daily and untreated control group for 4 weeks until euthanasia.The fused motion segments were subjected to manual palpation,gross observation,and radiographic investigation before histomorphologic and scanning electron microscopic analyses.Statistical differences between the LIPUS group and the control group are found in the fusion rate,bone density gray scale,trabecular bone formation,osteoblast-like cells,chondrocytes and positive expression of BMP-2 and TGF-β1 in the junction zone(significance level p〈0.05).The results suggest that LIPUS can increase fusion rates and accelerate bone in-growth into PHAB.Hence,PHAB and LIPUS may be used together to increase fusion rates in a rabbit spinal fusion model with a promising extension to human application.展开更多
The pattern of population distribution of the common hippopotamus was examined along the 165 km stretch of the Luangwa River in eastern Zambia. The study area was divided between the upper (A-D) and lower (E-H) study ...The pattern of population distribution of the common hippopotamus was examined along the 165 km stretch of the Luangwa River in eastern Zambia. The study area was divided between the upper (A-D) and lower (E-H) study blocks. Population data are collected between 1976-2008 and this study 2009-2012 showed a significant difference in the pattern of density distribution between upper and lower study blocks. Upper blocks had higher density of 41/km than lower blocks 29/km. Length of study blocks was discounted as density was used to determine distribution pattern. Results obtained suggest that primary production in each study block as influenced by river geomorphologic features such as river bends and confluences characterized higher hippopotamus density in the upper blocks. Further research is required to investigate other factors that may have interplayed with food (above ground grass biomass) and river meander features to separate upper and lower blocks.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42277161,42230709).
文摘Accurate identification and effective support of key blocks are crucial for ensuring the stability and safety of rock slopes.The number of structural planes and rock blocks were reduced in previous studies.This impairs the ability to characterize complex rock slopes accurately and inhibits the identification of key blocks.In this paper,a knowledge-data dually driven paradigm for accurate identification of key blocks in complex rock slopes is proposed.Our basic idea is to integrate key block theory into data-driven models based on finely characterizing structural features to identify key blocks in complex rock slopes accurately.The proposed novel paradigm consists of(1)representing rock slopes as graph-structured data based on complex systems theory,(2)identifying key nodes in the graph-structured data using graph deep learning,and(3)mapping the key nodes of graph-structured data to corresponding key blocks in the rock slope.Verification experiments and real-case applications are conducted by the proposed method.The verification results demonstrate excellent model performance,strong generalization capability,and effective classification results.Moreover,the real case application is conducted on the northern slope of the Yanqianshan Iron Mine.The results show that the proposed method can accurately identify key blocks in complex rock slopes,which can provide a decision-making basis and rational recommendations for effective support and instability prevention of rock slopes,thereby ensuring the stability of rock engineering and the safety of life and property.
基金supported by the following two grants:(i)Japan Society for the Promotion of Science(JSPS)KAKENHI Grant Number JP22H01581(i)National Research Counsil(NRC)of Sri Lanka Investigator Driven Grant Number 22-041.
文摘Concrete pavement often experiences accelerated deterioration due to water and chemical ingress through micro-cracks and surface voids.Particularly,the ingress of aggressive agents into the concrete matrix results in irreversible changes and deterioration on its endurance.Numerous studies unveiled that hydrophobic surface protection could be an inexpensive and effective way of enhancing the durability of concrete.This research work aims to assess the feasibility of bio-cement posttreatment for facilitating hydrophobic surface protection,thus enhancing the performance and durability of concrete blocks.Enzyme induced carbonate precipitation(EICP)is one of the promising bio-cement methods.Concrete blocks casted in four different grades were subjected to EICP treatment with different treatment schemes and recipes of cementation media.The treated blocks were tested for water absorption,ultrasonic pulse velocity(UPV)measurements,unconfined compressive strength(UCS),thermal performance,and scanning electron microscopy(SEM).The results indicated that the concrete blocks subjected to EICP posttreatment showed over a 55%reduction in water absorption,a 15%higher UCS and a 6.7%higher UPV when compared with control blocks.The SEM analysis suggested that the EICP posttreatment could enhance the durability of concrete paving blocks by enabling a layer of calcite on the surface and by plugging the transport pore channels of the concrete.Although most of the posttreatment strategies investigated herein were found to be operative,a better response was seen in the posttreatment by spraying scheme with 0.5 mol/L cementation media(CM).With the successful demonstration,the EICP treatment prior to the use of concrete blocks can be recommended to the pavement construction industry.
基金The authors would like to acknowledge CAPES (Higher Education Personnel Improvement Coordination) for the financial support given to this research.
文摘The purpose of this paper is to identify the processes with the highest contribution to potential environmental impacts in the life cycle of the masonry of concrete blocks by evaluating their main emissions contributing to impact categories and identifying hotspots for environmental improvements.The research is based on the Life Cycle Assessment(LCA)study of non-load-bearing masonry of concrete blocks performed by the authors.The processes those have demonstrated higher contribution to environmental impacts were identified in the Life Cycle Impact Assessment(LCIA)phase and a detailed analysis was carried out on the main substances derived from these processes.The highest potential impacts in the life cycle of the concrete blocks masonry can be attributed mainly to emissions coming from the production of Portland cement,which explains the peak of impact potential on the blocks production stage,but also the significant impact potential in the use of the blocks for masonry construction,due to the use of cement mortar.The results of this LCA study are part of a major research on the comparative analysis of different typologies of non-load-bearing external walls,which aims to contribute to the creation of a life cycle database of major building systems,to be used by the environmental certification systems of buildings.
基金funded by the Project of the Hubei Provincial Department of Science and Technology(Grant No.2022CFB957)the Project of Hubei Engineering University of Teaching Research(Grant No.JY2024032)+1 种基金Ministry of Education University-Industry Cooperation Collaborative Education Project(Grant No.220903584161245)College Students’Innovation and Entrepreneurship Training Program(Grant Nos.DC2024031,DC2024032).
文摘The behavior of single-phase flow and conjugate heat transfer in micro-channel heat sinks(MCHS)subjected to auniform heat flux is investigated by means of numerical simulations.Various geometrical configurations areexamined,particularly,the combinations of rectangular solid and perforated blocks,used to create a disturbancein the flow.The analysis focuses on several key aspects and related metrics,including the temperature distribution,the mean Fanning friction factor,the pressure drop,the Nusselt number,and the overall heat transfer coefficientacross a range of Reynolds numbers(80–870).It is shown that the introduction of such blocks significantlyenhances the heat transfer performances of the MCHS compared to the straight-through flow channel.Specifically,a case is found where the Nusselt number increases by 2.3 times relative to the reference case.The integrationof perforated blocks facilitates the generation of vorticity within the channel,promoting the mixing of coldand hot fluids.Notably,MCHS incorporating perforated rectangular blocks exhibit more pronounced heat transferbenefits at Reynolds numbers smaller than 400.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3080200)。
文摘The identification and characterization of concealed in-situ rock blocks on high-steep slope exposures are critical in rock engineering,but remain challenging.This study employs advanced UAV-based photogrammetry to capture high-resolution discontinuity data and develops a fully automated rock block extraction method consisting of three steps:(1)determination of free face and non-free fracture intersections,(2)surface search for rock blocks on free face.and(3)extraction and analysis of rock blocks.This approach simplifies the determination of discontinuity intersections while maintaining high accuracy.By incorporating all types of discontinuities contributing to rock block formation,the method enables precise in-situ rock block identification and extraction.Application to a rock slope in China,produced results consistent with the rock blocks observed in the 3D model,highlighting its accuracy and practical value.
文摘Traffic-induced ground vibrations cause significant problems for residents and nearby structures.Reducing the effect of these vibrations on the neighboring environment is a key challenge,particularly in urban areas.This study presents both numerical and experimental investigations of the performance of mass scatters for screening ground vibrations.A three-dimensional numerical model is validated and extended to conduct a comparative study on the efficiency of three geotechnical methods of isolation.These methods include trench barriers,waveimpeding blocks(WIBs),and mass scatters.The results showed that mass scatters represent an efficient way of scattering ground vibrations,and their efficiency is mainly related to the weights of mass scatters and their natural frequency,which control the dynamic soil response in the frequency domain.Rigid trench barriers are less effective than soft ones,and their efficiency is more pronounced regarding the WIB.Soft barriers with a depth of an order of half of the wavelength can decrease the vibration levels by up to 50%,which is comparable to the performance of enormous mass scatters.The dimensions of WIBs must be chosen according to the wavelength of incident waves and the cutoff frequency of the topsoil layer.Considering the significant wavelength of traffic-induced vibration,the use of trench barriers or WIBs becomes impractical and expensive;therefore,mass scatters appear to be an efficient and practical solution.
文摘BACKGROUND Femur fractures are one of the most serious injuries that occur in the older population and are associated with severe pain and increased mortality.The primary objective of this study was to find if there was a significant difference in pain scores in patients treated with femoral nerve blocks(FNB)compared with patients treated with the standard analgesia protocol.The secondary objective was to find if there was a significant difference in morbidity between the two groups.AIM To evaluate the effectiveness of ultrasound(US)-guided FNB in managing preoperative pain and reducing morbidity in patients with neck femur fractures compared to the standard analgesia protocol.The study seeks to determine whether FNB offers superior outcomes in terms of pain control,rehospitalization rates,and mortality.METHODS This retrospective cohort study included 1577 patients suffering from neck femur fractures.387 patients were treated with a FNB for pain management upon arrival at the emergency department,the rest were treated with standard analgesia.Pain was assessed from electronic medical records using the visual analogue scale(VAS)pre surgery,12-and 24-hour post-surgery.To determine morbidity and mortality during hospitalizations and 6 months after,it was collected from electronic medical records.RESULTS In a cohort of 1577 patients,those receiving US-guided FNB had significantly lower preoperative VAS pain scores(1.46±2.49 vs 1.82±2.59,P=0.001),reduced rehospitalization rates(0.99±1.96 vs 1.46±2.34,P<0.001),and lower mortality(16%vs 32%,P<0.001)compared to standard analgesia.CONCLUSION US guided FNB is more effective for pain management compared with standard analgesia.This method was also found to significantly reduce the risk of morbidity in those patients.
基金supported by the Scientific research and technology development projects of CNPC“Research on Key Technologies and Equipment for Drilling and Completion of 10000-m Ultra-deep Oil and Gas Resources”(No.2022ZG06)“Development of a Complete Set of 70 MPa Intelligent Managed Pressure Drilling Equipment”(No.2024ZG35).
文摘Real-time monitoring of wellbore stability during drilling is crucial for the early detection of instability and timely interventions.The cause and type of wellbore instability can be identified by analyzing the dropped blocks brought to the surface by the drilling fluid,enabling preventive measures to be taken.In this study,an image capture system with fully automated sorting and 3D scanning was developed to obtain the complete 3D point cloud data of dropping blocks.The raw data obtained were preprocessed using methods such as format conversion,down sampling,coordinate transformation,statistical filtering,and clustering.Feature extraction algorithms,including the principal component analysis bounding box method,triangular meshing method,triaxial projection method,local curvature method,and model segmentation projection method,were employed,which resulted in the extraction of 32 feature parameters from the point cloud data.An optimal machine learning algorithm was developed by training it with 10 machine learning algorithms and the block data collected in the field.The XGBoost algorithm was then used to optimize the feature parameters and improve the classification model.An intelligent,fully automated feature parameter extraction and classification system was developed and applied to classify the types of falling blocks in 12 sets of drilling field and laboratory experiments and to identify the causes of wellbore instability.An average accuracy of 93.9%was achieved.This system can thus enable the timely diagnosis and implementation of preventive and control measures for wellbore instability in the field.
基金Funded by the Scientific Support Project of the State Eleventh Five-Year Plan (2007BAQ01089)~~
文摘On the description of the landscapes of historical blocks in China,this paper proposes the approaches to renovating the historical blocks,including their repairing and reconstruction. It aims at presenting suggestions for the protection and development of historical blocks through analyzing the methods and procedures for repairing and rebuilding the infrastructures and green landscapes in the blocks.
基金This research was financially supported by the National Natural Science Foundation of China (No.50104009) and the Key Scienceand Technology Research Subject of the Ministry of Education of China (No.204183).
文摘The coefficients of friction and squeezing of the key blocks comer in the roof structure of underground coalface are key factors to roof structure stability quantitative analysis. In this paper, through the special test of three-type corner friction and squeez- ing of real rock specimens, and physical simulation test on the roof key blocks of roof structure as well as the finite element calcula- tion of the corner stress distribution and failure mechanism, the characteristics of friction and squeezing of the roof key blocks comer are revealed. It is found that the friction angle of the roof key blocks corner is the residual friction angle, and the frictional angle of the roof key blocks is 22-32° (average 27°), so the friction coefficient is determined as 0.5. It also found the squeezing strength is less than the uniaxial strength, and the squeezing coefficient of the roof blocks corner is determined as 0.4. Based on the results, the ground control theory can be updated from qualitative analysis to quantitative analysis.
文摘BACKGROUND Coronavirus disease 2019(COVID-19)caused by the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has resulted in a worldwide health crisis since it first appeared.Numerous studies demonstrated the virus’s predilection to cardiomyocytes;however,the effects that COVID-19 has on the cardiac conduc-tion system still need to be fully understood.AIM To analyze the impact that COVID-19 has on the odds of major cardiovascular complications in patients with new onset heart blocks or bundle branch blocks(BBB).METHODS The 2020 National Inpatient Sample(NIS)database was used to identify patients admitted for COVID-19 pneumonia with and without high-degree atrioven-tricular blocks(HDAVB)and right or left BBB utilizing ICD-10 codes.The patients with pre-existing pacemakers,suggestive of a prior diagnosis of HDAVB or BBB,were excluded from the study.The primary outcome was inpatient mortality.Secondary outcomes included total hospital charges(THC),the length of hospital stay(LOS),and other major cardiac outcomes detailed in the Results section.Univariate and multivariate regression analyses were used to adjust for confounders with Stata version 17.RESULTS A total of 1058815 COVID-19 hospitalizations were identified within the 2020 NIS database,of which 3210(0.4%)and 17365(1.6%)patients were newly diagnosed with HDAVB and BBB,respectively.We observed a significantly higher odds of in-hospital mortality,cardiac arrest,cardiogenic shock,sepsis,arrythmias,and acute kidney injury in the COVID-19 and HDAVB group.There was no statistically significant difference in the odds of cerebral infarction or pulmonary embolism.Encounters with COVID-19 pneumonia and newly diagnosed BBB had a higher odds of arrythmias,acute kidney injury,sepsis,need for mechanical ventilation,and cardiogenic shock than those without BBB.However,unlike HDAVB,COVID-19 pneumonia and BBB had no significant impact on mortality compared to patients without BBB.CONCLUSION In conclusion,there is a significantly higher odds of inpatient mortality,cardiac arrest,cardiogenic shock,sepsis,acute kidney injury,supraventricular tachycardia,ventricular tachycardia,THC,and LOS in patients with COVID-19 pneumonia and HDAVB as compared to patients without HDAVB.Likewise,patients with COVID-19 pneumonia in the BBB group similarly have a higher odds of supraventricular tachycardia,atrial fibrillation,atrial flutter,ventricular tachycardia,acute kidney injury,sepsis,need for mechanical ventilation,and cardiogenic shock as compared to those without BBB.Therefore,it is essential for healthcare providers to be aware of the possible worse predicted outcomes that patients with new-onset HDAVB or BBB may experience following SARS-CoV-2 infection.
文摘The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.
基金This project is supported by Provincial ScienceTechnology Foundation of Liaoning (No. 20022132)
文摘Optimization design of hydraulic manifold blocks (HMB) is studied as acomplex solid spatial layout problem. Based on comprehensive research into structure features anddesign rules of HMB, an optimal mathematical model for this problem is presented. Usinghuman-computer cooperative genetic algorithm (GA) and its hybrid optitation strategies, integratedlayout and connection design schemes of HMB can be automatically optimized. An example is given totestify it.
基金The EU Seventh Framework Programme FP7-PEOPLE-IRSES( No. 247083)
文摘In order to decrease both computational complexity and coding time, an improved algorithm for the early detection of all-zero blocks (AZBs) in H. 264/AVC is proposed. The previous AZBs detection algorithms are reviewed. Three types of transformed frequency-domain coefficients, which are quantized to zeros, are analyzed. Based on the three types of frequencydomain scaling factors, the corresponding spatial coefficients are derived. Then the Schwarz inequality is applied to the derivation of the three thresholds based on spatial coefficients. Another threshold is set on the basis of the probability distribution of zero coefficients in a block. As a result, an adaptive AZBs detection algorithm is proposed based on the minimum of the former three thresholds and the threshold of zero blocks distribution. The simulation results show that, compared with the existing AZBs detection algorithms, the proposed algorithm achieves a 5% higher detection ratio in AZBs and 4% to 10% computation saving with only 0. 1 dB video quality degradation.
基金Project supported by the National Natural Science Foundation of China (Grant No.50375023)
文摘This paper establishes a mathematical model of multi-objective optimization with behavior constraints in solid space based on the problem of optimal design of hydraulic manifold blocks (HMB). Due to the limitation of its local search ability of genetic algorithm (GA) in solving a massive combinatorial optimization problem, simulated annealing (SA) is combined, the multi-parameter concatenated coding is adopted, and the memory function is added. Thus a hybrid genetic-simulated annealing with memory function is formed. Examples show that the modified algorithm can improve the local search ability in the solution space, and the solution quality.
文摘The use of aluminum, particularly for engine blocks, has grown considerably in the past ten years, and continues to rise in the automotive industry. In order to enhance the quality and engineering functionality of die cast engine blocks, die design and processes have to be optimized. In this study, a computer simulation software, MAGMAsoft, as an advanced tool for optimizing die design and casting process, was employed to virtually visualize cavity filling and patterns of a V6 engine block. The original die design and process was simulated first to establish a baseline. A reality check was used to verify the predicted results. Then, the die modification with a different runner system was made by using a CAD software, Unigraphics (UG). The simulation on combinations of the modified die design and revised process was performed to examine the effect of die modification and process change on flow filling of V6 engine blocks. The simulated prediction indicates that the enhancement of cavity filling due to the die and process modification minimizes the occurrence of defects during casting, and consequently improves the quality of blocks. The results of mechanical testing show a significant increase in fatigue strengths, and a moderately improvement on tensile properties for the blocks die cast with the new die design and process in comparison with those produced by the original ones.
基金This proiect was supported by the Natural Science Foundation of Guangdong Province under contract No 04000377.
文摘An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.
文摘he effects of porous hydroxyapatite blocks(PHABs) and an adjunct low-intensity pulsed ultrasound stimulation(LIPUS) on the fusion rate in a rabbit spinal posterolateral fusion(PLF) model were evaluated.Twenty rabbits underwent PLF with autograft and PHABs were randomly assigned to two groups:treated group with 20 min LIPUS daily and untreated control group for 4 weeks until euthanasia.The fused motion segments were subjected to manual palpation,gross observation,and radiographic investigation before histomorphologic and scanning electron microscopic analyses.Statistical differences between the LIPUS group and the control group are found in the fusion rate,bone density gray scale,trabecular bone formation,osteoblast-like cells,chondrocytes and positive expression of BMP-2 and TGF-β1 in the junction zone(significance level p〈0.05).The results suggest that LIPUS can increase fusion rates and accelerate bone in-growth into PHAB.Hence,PHAB and LIPUS may be used together to increase fusion rates in a rabbit spinal fusion model with a promising extension to human application.
文摘The pattern of population distribution of the common hippopotamus was examined along the 165 km stretch of the Luangwa River in eastern Zambia. The study area was divided between the upper (A-D) and lower (E-H) study blocks. Population data are collected between 1976-2008 and this study 2009-2012 showed a significant difference in the pattern of density distribution between upper and lower study blocks. Upper blocks had higher density of 41/km than lower blocks 29/km. Length of study blocks was discounted as density was used to determine distribution pattern. Results obtained suggest that primary production in each study block as influenced by river geomorphologic features such as river bends and confluences characterized higher hippopotamus density in the upper blocks. Further research is required to investigate other factors that may have interplayed with food (above ground grass biomass) and river meander features to separate upper and lower blocks.