Physical analog modeling is an effective approach for studying the hazards of coal bursts in coal similarity criteria for physical and mechanical parameters of the actual and similar materials are crucial to yield rea...Physical analog modeling is an effective approach for studying the hazards of coal bursts in coal similarity criteria for physical and mechanical parameters of the actual and similar materials are crucial to yield realistic results.The derivation of similarity criteria is predominantly based on dimensional analysis,while a systematic methodology has yet to be developed.This paper attempts to fill this gap by combining the equation transformation method with similarity theory to conduct an in-depth study on the similarity criteria of physical parameters of impact coal with various internal block sizes.On this basis,the influence of internal block size of impact coal on similarity criteria was studied.Block size can provide a selection basis for similar materials,and the influence of block size on model physical parameters and similarity criteria under different geometric similarity ratios was explored.The variation laws between geometric similarity ratio,block size,and physical properties were clarified,and the similarity criteria of impact coal under the influence of block size were adjusted.New insights into material selection for physical analog modeling were proposed.The established similarity criteria for impact coal under the influence of different block sizes can provide a theoretical basis for determining various parameters in the physical analog modeling of coal bursts,when building a physical model of impact coal,material selection and size selection can be based on similarity criteria to more accurately reproduce coal explosion disasters in the laboratory.展开更多
This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study f...This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.展开更多
The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order...The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.展开更多
To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra...To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.展开更多
In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an opt...In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper.First,Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator.Then,a real time block matching algorithm is researched and its block size is optimized with a standard object.Finally,experiments are performed with respect to a nanometer movement platform system,and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.展开更多
This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock sl...This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.展开更多
A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not on...A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.展开更多
This contribution focuses on the impact of shear flow on size and nanostructure of PS-based amphiphilic block copolymer (BC) micelles by varying the stirring rate and copolymer composition. The results show that the...This contribution focuses on the impact of shear flow on size and nanostructure of PS-based amphiphilic block copolymer (BC) micelles by varying the stirring rate and copolymer composition. The results show that the vesicles formed from diblock copolymer (di-BC) of PS-b-PAA remain with vesicular morphology, although the average size decreases, with the increase of stirring rate. However, the multi-compartment micelles (MCMs) formed from tri-block copolymer (tri-BC) of PS-b-P2VP-b-PEO are quite intricate, in which the copolymer first self-assembles into spheres, then to clusters, to large compound micelles (LCMs), and finally back to spheres, as stirring rate increases from 100 r/min to 2200 r/min. Formation mechanism studies manifest that vesicles form simultaneously as water is added to the di-BC solution, termed as direct- assembly, and remain with vesicular structure in the flowing process. While for the PS-b-P2VP-b-PEO copolymer, spherical micelles at initial stage can further assemble into clusters and LCMs, termed as second-assembly, due to the speeding-up- aggregation of the favorable stirring. As a result, an invert V-relationship between tri-BC micelle dimension and stirring rate is observed in contrast to the non-linear decreasing curve of di-BC vesicles. It is by investigating these various amphiphilic BCs that the understanding of shear dependence of size and morphology of micelles is improved from self-assembly to second-assembly process.展开更多
Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact...Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact surveying techniques applied to rock mass characterization offers significant advantages in terms of data numerosity,precision,and accuracy,allowing for performing a rigorous statistical analysis of the database.This fact is particularly evident when dealing with rockfall phenomena:uncertainties in spacing and orientation data could significantly amplify the uncertainties connected with in situ block size distribution(IBSD),which represents a relation between each possible value of the volume and its probability of not being exceeded.In addition to volume,block shape can be considered as a derived parameter that suffers from uncertainties.Many attempts to model the possible trajectories of blocks considering their actual shape have been proposed,aiming to reproduce the effect on motion.The authors proposed analytical equations for calculating the expected value and variance of volume distributions,based on the geometrically correct equation for block volume in the case of three discontinuity sets.They quantify and discuss the effect of both volume and shape variability through a synthetic case study.Firstly,a fictitious rock mass with three discontinuity sets is assumed as the source of rockfall.The IBSDs obtained considering different spacing datasets are quantitatively compared,and the overall uncertainty effect is assessed,proving the correctness of the proposed equations.Then,block shape distributions are obtained and compared,confirming the variability of shapes within the same IBSD.Finally,a comparison between trajectory simulations on the synthetic slope is reported,aiming to highlight the effects of the propagation of uncertainties to block volume and shape estimation.The benefits of an approach that can quantify the uncertainties are discussed from the perspective of improving the reliability of simulations.展开更多
In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions...In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions should be fulfilled for MDBMs in order to guarantee the A-stabilities. The explicit expressions of the polynomialsP(h) and Q(h) in the stability functions h(h)=P(h)/Q(h)are given. Furthermore, we prove P(-h)-Q(h). With the aid of symbolic computations and the expressions of diagonal Fade approximations, we obtained the biggest block size k of the A-stable MDBM for any given l (the order of the highest derivatives used in MDBM,l>1)展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.2024-10941)China University of Mining and Technology 2024 Graduate Innovation Program Projects(No.2024WLKXJ011)+1 种基金Jiangsu Graduate Student Research and Innovation Program(No.KYCX24_2846)the National Natural Science Foundation of China(Nos.52227901 and 51934007).
文摘Physical analog modeling is an effective approach for studying the hazards of coal bursts in coal similarity criteria for physical and mechanical parameters of the actual and similar materials are crucial to yield realistic results.The derivation of similarity criteria is predominantly based on dimensional analysis,while a systematic methodology has yet to be developed.This paper attempts to fill this gap by combining the equation transformation method with similarity theory to conduct an in-depth study on the similarity criteria of physical parameters of impact coal with various internal block sizes.On this basis,the influence of internal block size of impact coal on similarity criteria was studied.Block size can provide a selection basis for similar materials,and the influence of block size on model physical parameters and similarity criteria under different geometric similarity ratios was explored.The variation laws between geometric similarity ratio,block size,and physical properties were clarified,and the similarity criteria of impact coal under the influence of block size were adjusted.New insights into material selection for physical analog modeling were proposed.The established similarity criteria for impact coal under the influence of different block sizes can provide a theoretical basis for determining various parameters in the physical analog modeling of coal bursts,when building a physical model of impact coal,material selection and size selection can be based on similarity criteria to more accurately reproduce coal explosion disasters in the laboratory.
基金financially supported by the National Natural Science Foundation of China (No. 52174131)
文摘This research proposes the utilization of a geopolymer-based blasting sealing material to improve the profitability of coal sales and reduce the rate of coal fragmentation during blasting in open pit mines.The study first focused on optimizing the strength of the sealant material and reducing curing time.This was achieved by regulating the slag doping and sodium silicate solution modulus.The findings demonstrated that increasing slag content and improving the material resulted in an early rise in strength while increasing the modulus of the sodium silicate solution extended the curing time.The slag doping level was fixed at 80 g,and the sodium silicate solution modulus was set at 1.5.To achieve a strength of 3.12 MPa,the water/gel ratio was set at 0.5.The initial setting time was determined to be 33 min,meeting the required field test duration.Secondly,the strength requirements for field implementation were assessed by simulating the action time and force destruction process of the sealing material during blasting using ANSYS/LS-DYNA software.The results indicated that the modified material meets these requirements.Finally,the Shengli Open Pit Coal Mine served as the site for the field test.It was observed that the hole-sealing material’s hydration reaction created a laminated and flocculated gel inside it.This enhanced the density of the modified material.Additionally,the pregelatinized starch,functioning as an organic binder,filled the gaps between the gels,enhancing the cohesion and bonding coefficient of the material.Upon analyzing the post-blasting shooting effect diagram using the Split-Desktop software,it was determined that the utilization of the modified blast hole plugging material resulted in a decrease in the rate of coal fragmentation from 33.2%to 21.1%.This reduction exhibited a minimal error of 1.63%when compared to the field measurement,thereby providing further confirmation of the exceptional plugging capabilities of the modified material.This study significantly contributes to establishing a solid theoretical basis for enhancing the blasting efficiency of open pit mines and,in turn,enhancing their economic advantages.
基金Sponsored by the National Natural Science Foundation of China(60772066)
文摘The new features of H. 264 video coding standard make the motion estimation module much more time consuming than before. Especially, the motion search is required for each of the 4 modes for inter prediction. In order to reduce the computational complexity, we analyze the statistics of results of motion estimation, such as the continuity of best modes of blocks in successive frames and the chance to give up a sub-partition mode (smaller than 16 × 16) after integer-pixel motion estimation, from which we suggest to make mode prediction based on the motion information of the previous frame and skip sub-pixel motion estimation in subpartition mode selectively. According to the experimental result, the proposed algorithm can save 75 % of the computational time with a slight degradation (0.03 dB) on PSNR compared with the pseudocode of fast search motion estimation in JM12.2.
基金Project(60873230) supported by the National Natural Science Foundation of China
文摘To compress screen image sequence in real-time remote and interactive applications,a novel compression method is proposed.The proposed method is named as CABHG.CABHG employs hybrid coding schemes that consist of intra-frame and inter-frame coding modes.The intra-frame coding is a rate-distortion optimized adaptive block size that can be also used for the compression of a single screen image.The inter-frame coding utilizes hierarchical group of pictures(GOP) structure to improve system performance during random accesses and fast-backward scans.Experimental results demonstrate that the proposed CABHG method has approximately 47%-48% higher compression ratio and 46%-53% lower CPU utilization than professional screen image sequence codecs such as TechSmith Ensharpen codec and Sorenson 3 codec.Compared with general video codecs such as H.264 codec,XviD MPEG-4 codec and Apple's Animation codec,CABHG also shows 87%-88% higher compression ratio and 64%-81% lower CPU utilization than these general video codecs.
基金supported by the National Natural Science Foundation of China(Grant No.61305025)
文摘In order to model the hysteresis behavior of a nano piezoelectric actuator(PA)on nano scale in a real time system,a new hysteresis modeling method based on an improved sub-pixel blocking matching algorithm with an optimal block size is proposed in this paper.First,Preisach model is introduced to model the hysteresis behavior of a piezoelectric actuator.Then,a real time block matching algorithm is researched and its block size is optimized with a standard object.Finally,experiments are performed with respect to a nanometer movement platform system,and the results show the feasibility and validity of the sub-pixel estimation based block matching algorithm and its application in modeling the hysteresis behavior of PA.
文摘This paper studies the stability of jointed rock slopes by using our improved three-dimensional discrete element methods (DEM) and physical modeling. Results show that the DEM can simulate all failure modes of rock slopes with different joint configurations. The stress in each rock block is not homogeneous and blocks rotate in failure development. Failure modes depend on the configuration of joints. Toppling failure is observed for the slope with straight joints and sliding failure is observed for the slope with staged joints. The DEM results are also compared with those of limit equilibrium method (LEM). Without considering the joints in rock masses, the LEM predicts much higher factor of safety than physical modeling and DEM. The failure mode and factor of safety predicted by the DEM are in good agreement with laboratory tests for any jointed rock slope.
文摘A conventional global contrast enhancement is difficult to apply in various images because image quality and contrast enhancement are dependent on image characteristics largely. And a local contrast enhancement not only causes a washed-out effect, but also blocks. To solve these drawbacks, this paper derives an optimal global equalization function with variable size block based local contrast enhancement. The optimal equalization function makes it possible to get a good quality image through the global contrast enhancement. The variable size block segmentation is firstly exeoated using intensity differences as a measure of similarity. In the second step, the optimal global equalization function is obtained from the enhanced contrast image having variable size blocks. Conformed experiments have showed that the proposed algorithm produces a visually comfortable result image.
基金supported by the Key Laboratory of Renewable Energy Foundation of Chinese Academy of Sciences(No.Y609JK1001)the National Natural Science Foundation of China(No.51576201)+2 种基金Natural Science Foundation of Guangdong province(Nos.2015A030312007 and 2015A030313716)Guangdong Science and Technology Project(No.2013B050800007)Guangzhou Science and Technology Project(No.2016201604030010)
文摘This contribution focuses on the impact of shear flow on size and nanostructure of PS-based amphiphilic block copolymer (BC) micelles by varying the stirring rate and copolymer composition. The results show that the vesicles formed from diblock copolymer (di-BC) of PS-b-PAA remain with vesicular morphology, although the average size decreases, with the increase of stirring rate. However, the multi-compartment micelles (MCMs) formed from tri-block copolymer (tri-BC) of PS-b-P2VP-b-PEO are quite intricate, in which the copolymer first self-assembles into spheres, then to clusters, to large compound micelles (LCMs), and finally back to spheres, as stirring rate increases from 100 r/min to 2200 r/min. Formation mechanism studies manifest that vesicles form simultaneously as water is added to the di-BC solution, termed as direct- assembly, and remain with vesicular structure in the flowing process. While for the PS-b-P2VP-b-PEO copolymer, spherical micelles at initial stage can further assemble into clusters and LCMs, termed as second-assembly, due to the speeding-up- aggregation of the favorable stirring. As a result, an invert V-relationship between tri-BC micelle dimension and stirring rate is observed in contrast to the non-linear decreasing curve of di-BC vesicles. It is by investigating these various amphiphilic BCs that the understanding of shear dependence of size and morphology of micelles is improved from self-assembly to second-assembly process.
文摘Block size and shape depend on the state of fracturing of the rock mass and,consequently,on the geometrical features of the discontinuity sets(mainly orientation,spacing,and persistence).The development of non-contact surveying techniques applied to rock mass characterization offers significant advantages in terms of data numerosity,precision,and accuracy,allowing for performing a rigorous statistical analysis of the database.This fact is particularly evident when dealing with rockfall phenomena:uncertainties in spacing and orientation data could significantly amplify the uncertainties connected with in situ block size distribution(IBSD),which represents a relation between each possible value of the volume and its probability of not being exceeded.In addition to volume,block shape can be considered as a derived parameter that suffers from uncertainties.Many attempts to model the possible trajectories of blocks considering their actual shape have been proposed,aiming to reproduce the effect on motion.The authors proposed analytical equations for calculating the expected value and variance of volume distributions,based on the geometrically correct equation for block volume in the case of three discontinuity sets.They quantify and discuss the effect of both volume and shape variability through a synthetic case study.Firstly,a fictitious rock mass with three discontinuity sets is assumed as the source of rockfall.The IBSDs obtained considering different spacing datasets are quantitatively compared,and the overall uncertainty effect is assessed,proving the correctness of the proposed equations.Then,block shape distributions are obtained and compared,confirming the variability of shapes within the same IBSD.Finally,a comparison between trajectory simulations on the synthetic slope is reported,aiming to highlight the effects of the propagation of uncertainties to block volume and shape estimation.The benefits of an approach that can quantify the uncertainties are discussed from the perspective of improving the reliability of simulations.
文摘In [1], a class of multiderivative block methods (MDBM) was studied for the numerical solutions of stiff ordinary differential equations. This paper is aimed at solving the problem proposed in [1] that what conditions should be fulfilled for MDBMs in order to guarantee the A-stabilities. The explicit expressions of the polynomialsP(h) and Q(h) in the stability functions h(h)=P(h)/Q(h)are given. Furthermore, we prove P(-h)-Q(h). With the aid of symbolic computations and the expressions of diagonal Fade approximations, we obtained the biggest block size k of the A-stable MDBM for any given l (the order of the highest derivatives used in MDBM,l>1)