In this paper we study the problem of locating multiple facilities in convex sets with fuzzy parameters. This problem asks to find the location of new facilities in the given convex sets such that the sum of weighted ...In this paper we study the problem of locating multiple facilities in convex sets with fuzzy parameters. This problem asks to find the location of new facilities in the given convex sets such that the sum of weighted distances between new facilities and existing facilities is minimized. We present a linear programming model for this problem with block norms, then we use it for problems with fuzzy data. We also do this for rectilinear and infinity norms as special cases of block norms.展开更多
Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, whi...Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.展开更多
By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is dev...By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio.展开更多
针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)...针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。展开更多
多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算...多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。展开更多
文摘In this paper we study the problem of locating multiple facilities in convex sets with fuzzy parameters. This problem asks to find the location of new facilities in the given convex sets such that the sum of weighted distances between new facilities and existing facilities is minimized. We present a linear programming model for this problem with block norms, then we use it for problems with fuzzy data. We also do this for rectilinear and infinity norms as special cases of block norms.
基金the National Natural Science Foundation of China(No.61572033)the Natural Science Foundation of Education Department of Anhui Province of China(No.KJ2015ZD08)the Higher Education Promotion Plan of Anhui Province of China(No.TSKJ2015B14)
文摘Block principle and pattern classification component analysis (BPCA) is a recently developed technique in computer vision In this paper, we propose a robust and sparse BPCA with Lp-norm, referred to as BPCALp-S, which inherits the robustness of BPCA-L1 due to the employment of adjustable Lp-norm. In order to perform a sparse modelling, the elastic net is integrated into the objective function. An iterative algorithm which extracts feature vectors one by one greedily is elaborately designed. The monotonicity of the proposed iterative procedure is theoretically guaranteed. Experiments of image classification and reconstruction on several benchmark sets show the effectiveness of the proposed approach.
基金Supported by the National Natural Science Foundation of China(61421001,61331021,61501029)
文摘By applying smoothed l0norm(SL0)algorithm,a block compressive sensing(BCS)algorithm called BCS-SL0 is proposed,which deploys SL0 and smoothing filter for image reconstruction.Furthermore,BCS-ReSL0 algorithm is developed to use regularized SL0(ReSL0)in a reconstruction process to deal with noisy situations.The study shows that the proposed BCS-SL0 takes less execution time than the classical BCS with smoothed projected Landweber(BCS-SPL)algorithm in low measurement ratio,while achieving comparable reconstruction quality,and improving the blocking artifacts especially.The experiment results also verify that the reconstruction performance of BCS-ReSL0 is better than that of the BCSSPL in terms of noise tolerance at low measurement ratio.
文摘针对图像修复过程中,颜色纹理光学属性分离不彻底,以及在稀疏表示图像修复时字典设计单一,导致壁画图像修复结果易出现结构不连贯和模糊效应等问题,提出了一种基于块核范数的鲁棒主成分分析(robust principal component analysis,RPCA)分解与熵权类稀疏的壁画修复方法。首先,采用提出的基于块核范数的RPCA图像分解算法,将壁画图像分解为结构层和纹理层,利用块核范数进行纹理矫正操作,克服了RPCA结构纹理分离不完全的问题。然后,提出熵加权k-means方法对结构层图像进行聚类,构建得到稀疏子类字典,并通过奇异值分解和分裂Bregman迭代优化的类稀疏修复方法,完成结构层图像的重构。最后,利用双三次插值算法实现对纹理层图像的修复,将修复后的结构层和纹理层进行融合,完成破损壁画的修复。通过对真实敦煌壁画数字化修复,实验结果表明,该算法能够有效地保护壁画图像的边缘和纹理等重要特征信息,无论从视觉效果还是从峰值信噪比等定量评价方面,提出的方法修复效果均优于比较算法,且修复执行效率更高。
文摘多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达在阵元故障时虚拟阵列输出数据矩阵会出现大量的整行数据丢失,由于阵列接收数据矩阵的不完整而导致对波达方向(Direction of Arrival,DOA)的估计性能恶化。大多数低秩矩阵填充算法要求缺失数据随机分布于不完整的矩阵中,无法适用于整行缺失数据的恢复问题。为此,提出了一种基于低秩块Hankel矩阵正则化的阵元故障MIMO雷达DOA估计方法。首先,通过奇异值分解(Singular Value Decomposition,SVD)降低虚拟阵列输出矩阵的维度,以减少计算复杂度。然后,对降维数据矩阵建立基于块Hankel矩阵正则化的低秩矩阵填充模型,在该模型中将MIMO雷达降维数据矩阵排列成块Hankel矩阵并施加Schatten-p范数作为正则项。最后,结合交替方向乘子法(Alternate Direction Multiplier Method,ADMM)求解该模型,获得完整的MIMO雷达降维数据矩阵。仿真结果表明,所提方法能够有效恢复降维数据矩阵中的整行数据缺失,具有较高的DOA估计精度和实时性,在阵元故障率低于50.0%时DOA估计精度优于现有方法。