Improving the permeability of coal seam is the key factor to realize efficient and safe mining of coalbed gas.In order to study the effect of high-voltage pulse breakdown on coal permeability,the multi-field coupling ...Improving the permeability of coal seam is the key factor to realize efficient and safe mining of coalbed gas.In order to study the effect of high-voltage pulse breakdown on coal permeability,the multi-field coupling high-voltage pulse crack coal permeability test equipment was used to carry out breakdown tests on bituminous coal samples soaked in conductive fluid under different voltage conditions.Subsequently,the breakdown effect of high voltage electrical pulse was characterized by comparison of breakdown energy,coal sample permeability and pore distribution,and the mechanism of voltage effect and the concentration of conductive liquid on the cracking effect was explored.The results show that the higher the pulse voltage,the faster the formation rate of plasma channel in coal and the more obvious the breakdown effect.With the increase of pulse voltage,the increment of coal porosity first increases and then decreases,the maximum increase is 31.4%,and the cracking effect is obvious.By comparing the changes of permeability and pore distribution of coal samples before and after pulse voltage treatment,it is found that conductive liquid can improve the conductivity in fragile cracks,crack growth and pore connectivity under pulse voltage.This paper provides a basis for high voltage electric pulse as a method to enhance coal permeability.展开更多
Road traffic noise is a significant environmental issue in urban areas with major health and economic implications for communities.Thus,a comprehensive understanding of tire/road noise mechanism is crucial for road pa...Road traffic noise is a significant environmental issue in urban areas with major health and economic implications for communities.Thus,a comprehensive understanding of tire/road noise mechanism is crucial for road pavement engineering.This study evaluates the noise behaviour of six innovative microsurfacing mixtures incorporating natural and artificial aggregates(geopolymers and crumb rubber)with varying particle size distributions and binders.A 2D laser analysis aims at collecting surface texture indicators,while noise-related indicators were derived according to ISO 10844 standards.Noise levels were predicted using the SPERoN^(R)model(statistical physical explanation of rolling noise),analysing the vibro-dynamic and the aerodynamic contributions separately.Correlations between tire/road noise levels predicted by the model and surface texture indicators elucidate the key factors influencing noise generation mechanism.The findings indicate that lower nominal maximum aggregate size(NMAS)and uniformly shaped artificial aggregates substantially mitigate rolling noise.Moreover,profiles with negative skewness and positive kurtosis exhibit reduced noise generation.The study highlights the limitations of traditional indicators like the estimated noise difference due to texture(ENDT)and highlights the g-factor from the Abbott curve as a more reliable predictor of pavement noise properties.These findings provide valuable insights for designing low-noise pavements with enhanced performance,offering new perspectives on the noise behaviour and acoustic properties of microsurfacing.展开更多
The interest of this research: there is oil seepage at the contact between coal seam-A and sandstone facies of Warukin Formation, so it is necessary to study where is the source rock. The correlation between HI and Tm...The interest of this research: there is oil seepage at the contact between coal seam-A and sandstone facies of Warukin Formation, so it is necessary to study where is the source rock. The correlation between HI and Tmax as result from rock eval pyrolysis shows that the shale of the Warukin Formation is immature while the correlation between HI and OI shows oil prone. The vitrinite (Ro) reflectance of Central Wara coal is between 0.48% up to 0.5% (immature), the content of the vitrinite group is 68.0 - 84.8 (% Vol.), Liptinite 3.0 - 14.0 (% Vol.) and inertinite 0.48 - 25.0 (% Vol.). The high content of liptinite mineral groups (14% Vol.) and the presence of exsudatinite maceral are as an initial indication of bitumenization of oil formation when there is a change in reflectance and fluorescence. Therefore, Central Wara coal plays an important role as the source rock of the Warukin Formation, although the maturity level is immature, the presence of exsudatinite maceral is believed to be the source of origin for producing oil, where the organic material comes from terrestrial.展开更多
An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature wa...An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.展开更多
Silurian sandstone in Tarim Basin has good reservoir properties and active oil and gas shows, especially thick widely-distributed bituminous sandstone. Currently, the Silurian was found containing both bitumen and con...Silurian sandstone in Tarim Basin has good reservoir properties and active oil and gas shows, especially thick widely-distributed bituminous sandstone. Currently, the Silurian was found containing both bitumen and conventional reservoirs, with petroleum originating from terrestrial and marine source rocks. The diversity of their distribution was the result of "three sources, three stages" accumulation and adjustment processes. "Three sources" refers to two sets of marine rocks in Cambrian and Middle-Upper Ordovician, and a set of terrestrial rock formed in Triassic in the Kuqa depression. "Three stages" represents three stages of accumulation, adjustment and reformation occurring in Late Caledonian, Late Hercynian and Late Himalayan, respectively. The study suggests that the Silurian bitumen is remnants of oil generated from Cambrian and Ordovician source rocks and accumulated in the sandstone reservoir during Late Caledonian-Early Hercynian and Late Hercynian stages, and then damaged by the subsequent two stages of tectonic uplift movements in Early Hercynian and Pre-Triassic. The authors presumed that the primary paleo-reservoirs formed during these two stages might he preserved in the Silurian in the southern deep part of the Tabei area. Except for the Yingmaili area where the Triassic terrestrial oil was from the Kuqa Depression during Late Himalayan Stage, all movable oil reservoirs originated from marine sources. They were secondary accumulations from underlying Ordovician after structure reverse during the Yanshan- Himalayan stage. Oil/gas shows mixed-source characteristics, and was mainly from Middle-Upper Ordovician. The complexity and diversity of the Silurian marine primary properties were just defined by these three stages of oil-gas charging and tectonic movements in the Tabei area.展开更多
The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dyn...The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dynamics simulations were employed to study the impact of three types of surfactants on the surface adsorption properties and wettability of highly hydrophobic bituminous coal.The results show that the surface of highly hydrophobic bituminous coal is compact,rich in inorganic minerals,and poorly wettable and that coal molecules are dominated by hydrophobic functional groups of aromatic rings and aliphatic structures.The wetting performance of surfactants as the intermediate carrier to connect coal and water molecules is largely determined by the interaction force between surfactants and coal(Fs-c)and the interaction force between surfactants and water(Fs-w),which effectively improve the wettability of modified coal dust via modifying its surface electrical properties and surface energy.A new type of wetting agent with a dust removal rate of 89%has been developed through discovery of a compound wetting agent solution with optimal wetting and settling performance.This paper provides theoretical and technical support for removing highly hydrophobic bituminous coal dust in underground mining.展开更多
The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength las...The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.展开更多
Hierarchical porous carbon(HPC)from bituminous coal was designed and synthesized through pyrolysis foaming and KOH activation.The obtained HPC(NCF-KOH)were characterized by a high specific surface area(S_(BET))of 3472...Hierarchical porous carbon(HPC)from bituminous coal was designed and synthesized through pyrolysis foaming and KOH activation.The obtained HPC(NCF-KOH)were characterized by a high specific surface area(S_(BET))of 3472.41 m^(2)/g,appropriate mesopores with V_(mes)/V_(total)of 57%,and a proper amount of surface oxygen content(10.03%).This NCF-KOH exhibited a high specific capacitance of 487 F/g at 1.0 A/g and a rate capability of 400 F/g at 50 A/g based on the three-electrode configuration.As an electrode for a symmetric capacitor,a specific capacitance of 299 F/g at 0.5 A/g was exhibited,and the specific capacitance retained 96%of the initial capacity at 5 A/g after 10,000 cycles.Furthermore,under the power density of 249.6 W/kg in 6 mol/L KOH,a high energy density of 10.34 Wh/kg was obtained.The excellent charge storage capability benefited from its interconnected hierarchical pore structure with high accessible surface area and the suitable amount of oxygen-containing functional groups.Thus,an effective strategy to synthesize HPC for high-performance supercapacitors serves as a promising way of converting coal into advanced carbon materials.展开更多
High volatile bituminous coal .was demineralized by a chemical method. The vibrations of the "aromatics" structure of graphite, crystalline or non-crystalline, were observed in the spectra at the 1600 cm-1 region. T...High volatile bituminous coal .was demineralized by a chemical method. The vibrations of the "aromatics" structure of graphite, crystalline or non-crystalline, were observed in the spectra at the 1600 cm-1 region. The band at 1477 cm-1 is assigned as VR band, the band at 1392 cm-1 as VL band and the band at 1540 cm-1 as GR band. Graphite structure remains after chemical leaching liberates oxygenated functional groups and mineral groups. The silicate bands between 1010 and 1100 cm-1 are active in the infrared (IR) spec^urn but inactive in the Raman spectrum. Absorption arising from C-H stretching in alkenes occurs in the region of 3000 to 2840 cm-~. Raman bands because of symmetric stretch of water molecules were also observed in the spectrum at 3250 cm-1 and 3450 cm-1. Scanning electron microscopy analy- sis revealed the presence of a graphite layer on the surface. Leaching of the sample with hydrofluoric acid decreases the mineral phase and increases the carbon content. The ash content is reduced by 84.5wt% with leaching from its initial value by mainly removing aluminum and silicate containing minerals.展开更多
The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity...The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity after magma intrusion was studied by analysis of regional and mine structure and magmatic activity.Experimental methods including maceral measurement under the microscope and mercury porosimetry were used for testing the pore structure.The authors believe that magma intrusion into low-rank bituminous coal causes reservoir porosity to gradually increase:the closer to the magmatic rock a sample is,the less the porosity.The pore size distribution also changes.In the natural coal bed the pore size is mainly in the transitive and middle pore range.However,the coal changes to anthracite next to the magmatic rock and larger pores dominate.Regional magma thermal evolution caused coal close to magmatic rock to be roasted,which reduced the volatile matter,developed larger holes,and destroyed plant tissue holes.The primary reason for a porosity decrease in the vicinity of magmatic rock is that Bituminite resulting from the roasting fills the holes that were present initially.展开更多
The traffic volume and the number of heavy vehicles are growing continuously. Considering the continuous traffic flow and the limited time available for road maintenance,it is very important to design a durable paveme...The traffic volume and the number of heavy vehicles are growing continuously. Considering the continuous traffic flow and the limited time available for road maintenance,it is very important to design a durable pavement system. Asphalt pavements with a healing capability are believed to be very useful since they can extend the pavement service life thanks to rest periods and hot summers. In order to design durable asphalt pavements,research in understanding and upgrading the self-healing capability of bituminous materials in time is of major importance. The self healing capability of bituminous mastic was evaluated in this research with a direct tension healing test. In the test program,different healing times,crack status and modifications were applied. The results indicate that elastic recovery and flow capacity are important factors for the self healing capability of bituminous materials at different crack phases as simulated with the direct tension test.展开更多
The formation mechanism of methane (CH4) during coal evolution has been investigated by density functional theory (DFT) of quantum chemistry. Thermogenic gas, which is generated during the thermal evolution of med...The formation mechanism of methane (CH4) during coal evolution has been investigated by density functional theory (DFT) of quantum chemistry. Thermogenic gas, which is generated during the thermal evolution of medium rank coal, is the main source of coalbed methane (CBM). Ethylbenzene (A) and 6,7-dimethyl-5,6,7,8-tetrahydro-1-hydroxynaphthalene (B) have been used as model compounds to study the pyrolysis mechanism of highly volatile bituminous coal (R), according to the similarity of bond orders and bond lengths. All possible paths are designed for each model. It can be concluded that the activation energies for H-assisted paths are lower than others in the process of methane formation; an H radical attacking on β-C to yield CH4 is the dominant path for the formation of CH4 from highly volatile bituminous coal. In addition, the calculated results also reveal that the positions on which H radical attacks and to which intramolecular H migrates have effects on methyl cleavage.展开更多
The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km^2. We investigated the ages of authigenic illites in the SBS res...The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km^2. We investigated the ages of authigenic illites in the SBS reservoirs and constrained their formation timing by using the 40^Ar/39^Ar step wise heating method. The age spectra, 39^Ar recoil loss and their controlling factors were investigated systematically. The 40^Ar/39^Ar ages were compared with the conventional K/Ar ages of identical clay fractions. The clay in the SBS reservoirs is dominated by orderly mixed-layer illite/smectite(I/S) with 5%–30% smectite layers. The I/S minerals morphology comprises primarily honeycomb, short filamentous and curved-lath particles, characteristic of authigenic illites. The unencapsulated 40^Ar/39^Ar total gas ages(UTGA) of the authigenic illites range from 188.56 ± 6.20 Ma to 491.86 ± 27.68 Ma, which are 7% to 103% older than the corresponding K/Ar ages of 124.87 ± 1.11 Ma to 383.45 ± 2.80 Ma, respectively. The K-Ar ages indicate multistage accumulations with distinct distribution patterns in the Tarim Basin: older(late Caledonian-early Hercynian) around the basin margin, younger(late Hercynian) in the basin centre, and the youngest(middle to late Yanshanian) in the Ha-6 well-block, central area of the North Uplift. The age difference is believed to have been caused by the 39^Ar recoil loss during the irradiation process. Compared with the K/Ar ages, the estimated 39^Ar recoil losses in this study are in the range from 7% to 51%. The 39^Ar recoil loss appears to increase not only with the decreasing particle sizes of the I/S, but also with increasing percentage of smectite layers(IR) of the I/S, and smectite layer content(SLC) of the samples. We conclude that due to significant 39^Ar recoil losses, UTGA may not offer any meaningful geological ages of the authigenic illite formation in the SBS and thus can not be used to represent the hydrocarbon charge timing. 39^Ar recoil losses during 40^Ar/39^Ar dating can not be neglected when dating fine authigenic illite, especially when the ordered mixed-layer I/S containing small amount of smectite layers(IR30%) in the reservoir formations. Compared with the unencapsulated Ar-Ar method, the conventional K-Ar method is less complicated, more accurate and reliable in dating authigenic illites in petroleum reservoirs.展开更多
The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to b...The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.展开更多
Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]p...Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.展开更多
In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanic...In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanical and physical characteristics of rubberized mixtures (based on cement, asphalt or soil) in which tire rubber is used either as alternative to natural aggregates or as additive. However, effect of tire rubber on noise reduction in rubberized bituminous layers, which is the main topic of present paper, has not been widely studied. In particular, this research paper is dealing with a sustainable use of tire rubber in asphalt pavement, leading to its generated noise reduction. An experimental pilot application has been conducted in the frame of a European Research Project, which has been implemented in a heavy traffic road section, cited outside Lamia city of Greece, (Vasilikon Street). The upper surface layer of the pavement has been made of rubberized bituminous mixture, produced by the wet process. Rheological characteristics of rubberized bitumen as well as basic properties of the implemented, rubberized bituminous mixture are presented. Moreover, measurements of noise level, deriving from vehicles’ motion, under operational conditions took place at the road section right after its implementation as well as after 8 months of its operation, while all data are presented in details. Results of the measurements on conventional and modified pavement sections are compared, certifying that rubberized asphalt layers can be not only environmentally friendly—since a category of solid wastes (worn automobile tires) is utilized—but also, addition of tire rubber particles in bituminous binder provides up to 3dB noise reducing bituminous mixtures and pavements, noise reduction that remains even after 8 months of road section’s operation.展开更多
The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper. Datong bitum...The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper. Datong bituminous coal samples sized 6 mm were oxidized at different temperatures and for different times and then carbonized and activated by steam to obtain activated carbons. A Uniform Design method was used to arrange the experiments,IR and adsorption experiments were used to characterize these oxidized coals,chars and activated carbon samples. The results show that the carboxyl group disappeared and α-CH2 groups joined to alkenes decreased dramatically but the carbonyl group clearly increased in the coal sample oxidized at 543 K; The chemical composition of coal samples oxidized at lower temperature is different from that of coal oxidized at 543 K. Oxidizing coal samples at higher temperatures for a short time or at lower temperatures for a longer time resulted in activated carbon samples that tended toward the same adsorption properties: Iodine number 1100 mg/g and Methylene blue value 252 mg/g. The yield of activated carbon obtained from the pre-oxidized coal is 10% higher than the yield from parent coal but the activated carbons have the same adsorption properties.展开更多
Influence of co-firing rate on SO 2 emission from co-firing municipal solid waste(MSW) and bituminous containing high amount of sulfur(1.79%) was studied in a 0.15 MWt circulating fluidized bed(CFB). The temperature ...Influence of co-firing rate on SO 2 emission from co-firing municipal solid waste(MSW) and bituminous containing high amount of sulfur(1.79%) was studied in a 0.15 MWt circulating fluidized bed(CFB). The temperature selected is 1123 K, typical for MSW incineration using CFB. The particle concentration in the dilution zone of the furnace, the alkali metal concentration and sulfate concentration in the recirculating ash and fly ash, and flue gas composition were determined. The results showed that the addition of MSW leads to a significant decrease in SO 2 emission. Concentration of SO 2 in flue gas decreased to 0 with the co-firing rate greater than 51%. This reduction in SO 2 emission is attributed both to the high particle concentration in the dilution zone of the furnace, the high content of alkali metals in the bed material, and to the comparatively high concentration of HCl in flue gas during co-firing of MSW and bituminous.展开更多
In this study uranium and thorium contents and depositional characteristics of ay rhan bituminous shales( BS), west of Ankara(central Anatolia), are investigated. Samples used were collected from boreholes opened ...In this study uranium and thorium contents and depositional characteristics of ay rhan bituminous shales( BS), west of Ankara(central Anatolia), are investigated. Samples used were collected from boreholes opened by Park Holding Ltd. A total of 25 samples were taken from bituminous shale levels in boreholes drilled at 6 different locations in the study area. The H rka formation which hosts bituminous shale deposits is a volcanosedimentary sequence and all lithofacies indicate that a lacustrine environment where the water level was continuously changed. In addition to hydrocarbon generation potential, bituminous shales also accumulate significant amount of radioactive elements such as uranium and thorium. The average uranium and thorium concentrations of BS(1.83/2.62 ppm) are much lower than averages of UC, NASK and PAAS(uranium: 2.70/2.66/3.10 ppm; thorium: 8.50/12.30/14.60 ppm). Low uranium contents in comparison to those of similar lacustrine environments might be attributed to that waters of depositional environment of BS contain low concentration of dissolved uranium and redox conditions were of oxic and dioxic character. Correlation data indicate that U and Th have a similar source and are associated predominantly with clays and phosphates and dominantly with organic material. Radioactive elements in the basin might be derived from Paleozoic granites and metamorphites(e.g. gneiss, schist) which comprise the basement and volcanism which was active in the region throughout the Miocene period. These elements are probably associated with uraniferous phosphate minerals(e.g. autunite, torbernite) which occur in granite, gneiss and schist. BS with average TOC content of 10.96 % shows very good/perfect source rock potential. Positive correlations between Gamma-Ray values and U, Th and K concentrations imply that radioactivity might be originated from these three elements.展开更多
A high volatile bituminous coal was subjected to a series of organic acid treatment in steps using citric acid (1 hr and 2 hr) and buffered EDTA with acetic acid (1 to 3 hr) at room temperature. Leaching was performed...A high volatile bituminous coal was subjected to a series of organic acid treatment in steps using citric acid (1 hr and 2 hr) and buffered EDTA with acetic acid (1 to 3 hr) at room temperature. Leaching was performed with acetic acid (2N) also for 1 hr. Citric acid procedure reduced the mineral matter below 1.94%. Calcites and aluminates are completely removed along with substantial quantity of silicates by citric acid leaching. The change in absorption of organic functional groups and mineral matter in coal samples were studied using Fourier transform infrared spectroscopy (FTIR). Analysis indicated that oxygen containing species were decreased in the coal structure during acetic acid and citric acid (40%) procedure and buffered EDTA 3 hours leaching. As the period of leaching with buffered EDTA increased from 1 hr to 3 hr, organic functional groups and mineral functional groups decreased its intensity. The results indicated that the described acid treatment procedures with citric acid have measurable effects on the coal structure.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant no.52274173).
文摘Improving the permeability of coal seam is the key factor to realize efficient and safe mining of coalbed gas.In order to study the effect of high-voltage pulse breakdown on coal permeability,the multi-field coupling high-voltage pulse crack coal permeability test equipment was used to carry out breakdown tests on bituminous coal samples soaked in conductive fluid under different voltage conditions.Subsequently,the breakdown effect of high voltage electrical pulse was characterized by comparison of breakdown energy,coal sample permeability and pore distribution,and the mechanism of voltage effect and the concentration of conductive liquid on the cracking effect was explored.The results show that the higher the pulse voltage,the faster the formation rate of plasma channel in coal and the more obvious the breakdown effect.With the increase of pulse voltage,the increment of coal porosity first increases and then decreases,the maximum increase is 31.4%,and the cracking effect is obvious.By comparing the changes of permeability and pore distribution of coal samples before and after pulse voltage treatment,it is found that conductive liquid can improve the conductivity in fragile cracks,crack growth and pore connectivity under pulse voltage.This paper provides a basis for high voltage electric pulse as a method to enhance coal permeability.
基金funded by the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement N°765057(SAFERUP Project).
文摘Road traffic noise is a significant environmental issue in urban areas with major health and economic implications for communities.Thus,a comprehensive understanding of tire/road noise mechanism is crucial for road pavement engineering.This study evaluates the noise behaviour of six innovative microsurfacing mixtures incorporating natural and artificial aggregates(geopolymers and crumb rubber)with varying particle size distributions and binders.A 2D laser analysis aims at collecting surface texture indicators,while noise-related indicators were derived according to ISO 10844 standards.Noise levels were predicted using the SPERoN^(R)model(statistical physical explanation of rolling noise),analysing the vibro-dynamic and the aerodynamic contributions separately.Correlations between tire/road noise levels predicted by the model and surface texture indicators elucidate the key factors influencing noise generation mechanism.The findings indicate that lower nominal maximum aggregate size(NMAS)and uniformly shaped artificial aggregates substantially mitigate rolling noise.Moreover,profiles with negative skewness and positive kurtosis exhibit reduced noise generation.The study highlights the limitations of traditional indicators like the estimated noise difference due to texture(ENDT)and highlights the g-factor from the Abbott curve as a more reliable predictor of pavement noise properties.These findings provide valuable insights for designing low-noise pavements with enhanced performance,offering new perspectives on the noise behaviour and acoustic properties of microsurfacing.
文摘The interest of this research: there is oil seepage at the contact between coal seam-A and sandstone facies of Warukin Formation, so it is necessary to study where is the source rock. The correlation between HI and Tmax as result from rock eval pyrolysis shows that the shale of the Warukin Formation is immature while the correlation between HI and OI shows oil prone. The vitrinite (Ro) reflectance of Central Wara coal is between 0.48% up to 0.5% (immature), the content of the vitrinite group is 68.0 - 84.8 (% Vol.), Liptinite 3.0 - 14.0 (% Vol.) and inertinite 0.48 - 25.0 (% Vol.). The high content of liptinite mineral groups (14% Vol.) and the presence of exsudatinite maceral are as an initial indication of bitumenization of oil formation when there is a change in reflectance and fluorescence. Therefore, Central Wara coal plays an important role as the source rock of the Warukin Formation, although the maturity level is immature, the presence of exsudatinite maceral is believed to be the source of origin for producing oil, where the organic material comes from terrestrial.
基金Supported by Hydrocarbon High-efficiency Utilization Technology Research Center of Yanchang Petroleum(Group)Co.Ltd.,China(ycsy2013ky-A-30)
文摘An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis.
基金funded by the PetroChina scientific and research funding
文摘Silurian sandstone in Tarim Basin has good reservoir properties and active oil and gas shows, especially thick widely-distributed bituminous sandstone. Currently, the Silurian was found containing both bitumen and conventional reservoirs, with petroleum originating from terrestrial and marine source rocks. The diversity of their distribution was the result of "three sources, three stages" accumulation and adjustment processes. "Three sources" refers to two sets of marine rocks in Cambrian and Middle-Upper Ordovician, and a set of terrestrial rock formed in Triassic in the Kuqa depression. "Three stages" represents three stages of accumulation, adjustment and reformation occurring in Late Caledonian, Late Hercynian and Late Himalayan, respectively. The study suggests that the Silurian bitumen is remnants of oil generated from Cambrian and Ordovician source rocks and accumulated in the sandstone reservoir during Late Caledonian-Early Hercynian and Late Hercynian stages, and then damaged by the subsequent two stages of tectonic uplift movements in Early Hercynian and Pre-Triassic. The authors presumed that the primary paleo-reservoirs formed during these two stages might he preserved in the Silurian in the southern deep part of the Tabei area. Except for the Yingmaili area where the Triassic terrestrial oil was from the Kuqa Depression during Late Himalayan Stage, all movable oil reservoirs originated from marine sources. They were secondary accumulations from underlying Ordovician after structure reverse during the Yanshan- Himalayan stage. Oil/gas shows mixed-source characteristics, and was mainly from Middle-Upper Ordovician. The complexity and diversity of the Silurian marine primary properties were just defined by these three stages of oil-gas charging and tectonic movements in the Tabei area.
文摘The internal mechanism of the high hydrophobicity of the coal samples from the Pingdingshan mining area was studied through industrial,element,and surface functional group analysis.Laboratory testing and molecular dynamics simulations were employed to study the impact of three types of surfactants on the surface adsorption properties and wettability of highly hydrophobic bituminous coal.The results show that the surface of highly hydrophobic bituminous coal is compact,rich in inorganic minerals,and poorly wettable and that coal molecules are dominated by hydrophobic functional groups of aromatic rings and aliphatic structures.The wetting performance of surfactants as the intermediate carrier to connect coal and water molecules is largely determined by the interaction force between surfactants and coal(Fs-c)and the interaction force between surfactants and water(Fs-w),which effectively improve the wettability of modified coal dust via modifying its surface electrical properties and surface energy.A new type of wetting agent with a dust removal rate of 89%has been developed through discovery of a compound wetting agent solution with optimal wetting and settling performance.This paper provides theoretical and technical support for removing highly hydrophobic bituminous coal dust in underground mining.
基金supported by National Natural Science Foundation of China(No.51276100)National Basic Research Program of China(973 Program)(No.2013CB228501)
文摘The wavelength dependence of laser induced breakdown spectroscopy (LIBS) in the analysis of the carbon contents of coal was studied using 266 nm and 1064 nm laser radiations. Compared with the 1064 nm wavelength laser ablation, the 266 nm wavelength laser ablation has less thermal effects, resulting in a better crater morphology on the coal pellets. Besides, the 266 nm wavelength laser ablation also provides better laser-sample coupling and less plasma shielding, resulting in a higher carbon line intensity and better signal reproducibility. The carbon contents in the bituminous coal samples have better linearity with the line intensities of atomic carbon measured by the 266 nm wavelength than those measured by the 1064 nm wavelength. The partial least square (PLS) model was established for the quantitative analysis of the carbon content in coal samples by LIBS. The results show that both of the 266 nm and 1064 nm wavelengths are capable of achieving good performance for the quantitative analysis of carbon content in coal using the PLS method.
基金the financial support of National Natural Science Foundation of China(Nos.U1910201,21878208,21961024)Shanxi Province Science Foundation for Key Program(No.201901D111001(ZD))+1 种基金Inner Mongolia Natural Science Foundation(No.2018JQ05)Inner Mongolia Autonomous Region Science&Technology Planning Project for Applied Technology Research and Development(No.2019GG261)。
文摘Hierarchical porous carbon(HPC)from bituminous coal was designed and synthesized through pyrolysis foaming and KOH activation.The obtained HPC(NCF-KOH)were characterized by a high specific surface area(S_(BET))of 3472.41 m^(2)/g,appropriate mesopores with V_(mes)/V_(total)of 57%,and a proper amount of surface oxygen content(10.03%).This NCF-KOH exhibited a high specific capacitance of 487 F/g at 1.0 A/g and a rate capability of 400 F/g at 50 A/g based on the three-electrode configuration.As an electrode for a symmetric capacitor,a specific capacitance of 299 F/g at 0.5 A/g was exhibited,and the specific capacitance retained 96%of the initial capacity at 5 A/g after 10,000 cycles.Furthermore,under the power density of 249.6 W/kg in 6 mol/L KOH,a high energy density of 10.34 Wh/kg was obtained.The excellent charge storage capability benefited from its interconnected hierarchical pore structure with high accessible surface area and the suitable amount of oxygen-containing functional groups.Thus,an effective strategy to synthesize HPC for high-performance supercapacitors serves as a promising way of converting coal into advanced carbon materials.
文摘High volatile bituminous coal .was demineralized by a chemical method. The vibrations of the "aromatics" structure of graphite, crystalline or non-crystalline, were observed in the spectra at the 1600 cm-1 region. The band at 1477 cm-1 is assigned as VR band, the band at 1392 cm-1 as VL band and the band at 1540 cm-1 as GR band. Graphite structure remains after chemical leaching liberates oxygenated functional groups and mineral groups. The silicate bands between 1010 and 1100 cm-1 are active in the infrared (IR) spec^urn but inactive in the Raman spectrum. Absorption arising from C-H stretching in alkenes occurs in the region of 3000 to 2840 cm-~. Raman bands because of symmetric stretch of water molecules were also observed in the spectrum at 3250 cm-1 and 3450 cm-1. Scanning electron microscopy analy- sis revealed the presence of a graphite layer on the surface. Leaching of the sample with hydrofluoric acid decreases the mineral phase and increases the carbon content. The ash content is reduced by 84.5wt% with leaching from its initial value by mainly removing aluminum and silicate containing minerals.
基金the National Basic Research Program of China(No.2009CB219605)the Key Program of the National Natural Science Foundation of China(No.40730422)the National Major Project of Science and Technology(No.2008ZX05034-04)
文摘The Qiwu Mine is located in the Ten Xian coal field of Shandong province.It experienced repeated volcanic activity,after the coal beds formed,where magma intrusion was significant The effect of coal reservoir porosity after magma intrusion was studied by analysis of regional and mine structure and magmatic activity.Experimental methods including maceral measurement under the microscope and mercury porosimetry were used for testing the pore structure.The authors believe that magma intrusion into low-rank bituminous coal causes reservoir porosity to gradually increase:the closer to the magmatic rock a sample is,the less the porosity.The pore size distribution also changes.In the natural coal bed the pore size is mainly in the transitive and middle pore range.However,the coal changes to anthracite next to the magmatic rock and larger pores dominate.Regional magma thermal evolution caused coal close to magmatic rock to be roasted,which reduced the volatile matter,developed larger holes,and destroyed plant tissue holes.The primary reason for a porosity decrease in the vicinity of magmatic rock is that Bituminite resulting from the roasting fills the holes that were present initially.
基金The Wuhan-delft cooperation and financial contributions from the China Scholarship Council are highly appreciated.
文摘The traffic volume and the number of heavy vehicles are growing continuously. Considering the continuous traffic flow and the limited time available for road maintenance,it is very important to design a durable pavement system. Asphalt pavements with a healing capability are believed to be very useful since they can extend the pavement service life thanks to rest periods and hot summers. In order to design durable asphalt pavements,research in understanding and upgrading the self-healing capability of bituminous materials in time is of major importance. The self healing capability of bituminous mastic was evaluated in this research with a direct tension healing test. In the test program,different healing times,crack status and modifications were applied. The results indicate that elastic recovery and flow capacity are important factors for the self healing capability of bituminous materials at different crack phases as simulated with the direct tension test.
基金supported by the Major Projects of National Science and Technology(Grant No.2011ZX05040-005-002-001)the National Natural Science Foundation of China(Grant No.21276171 and 21276003)+1 种基金the National Younger Natural Science Foundation of China(Grant No.21103120)China Postdoctoral Science Foundation(Grant No.2012M520608)
文摘The formation mechanism of methane (CH4) during coal evolution has been investigated by density functional theory (DFT) of quantum chemistry. Thermogenic gas, which is generated during the thermal evolution of medium rank coal, is the main source of coalbed methane (CBM). Ethylbenzene (A) and 6,7-dimethyl-5,6,7,8-tetrahydro-1-hydroxynaphthalene (B) have been used as model compounds to study the pyrolysis mechanism of highly volatile bituminous coal (R), according to the similarity of bond orders and bond lengths. All possible paths are designed for each model. It can be concluded that the activation energies for H-assisted paths are lower than others in the process of methane formation; an H radical attacking on β-C to yield CH4 is the dominant path for the formation of CH4 from highly volatile bituminous coal. In addition, the calculated results also reveal that the positions on which H radical attacks and to which intramolecular H migrates have effects on methyl cleavage.
文摘The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km^2. We investigated the ages of authigenic illites in the SBS reservoirs and constrained their formation timing by using the 40^Ar/39^Ar step wise heating method. The age spectra, 39^Ar recoil loss and their controlling factors were investigated systematically. The 40^Ar/39^Ar ages were compared with the conventional K/Ar ages of identical clay fractions. The clay in the SBS reservoirs is dominated by orderly mixed-layer illite/smectite(I/S) with 5%–30% smectite layers. The I/S minerals morphology comprises primarily honeycomb, short filamentous and curved-lath particles, characteristic of authigenic illites. The unencapsulated 40^Ar/39^Ar total gas ages(UTGA) of the authigenic illites range from 188.56 ± 6.20 Ma to 491.86 ± 27.68 Ma, which are 7% to 103% older than the corresponding K/Ar ages of 124.87 ± 1.11 Ma to 383.45 ± 2.80 Ma, respectively. The K-Ar ages indicate multistage accumulations with distinct distribution patterns in the Tarim Basin: older(late Caledonian-early Hercynian) around the basin margin, younger(late Hercynian) in the basin centre, and the youngest(middle to late Yanshanian) in the Ha-6 well-block, central area of the North Uplift. The age difference is believed to have been caused by the 39^Ar recoil loss during the irradiation process. Compared with the K/Ar ages, the estimated 39^Ar recoil losses in this study are in the range from 7% to 51%. The 39^Ar recoil loss appears to increase not only with the decreasing particle sizes of the I/S, but also with increasing percentage of smectite layers(IR) of the I/S, and smectite layer content(SLC) of the samples. We conclude that due to significant 39^Ar recoil losses, UTGA may not offer any meaningful geological ages of the authigenic illite formation in the SBS and thus can not be used to represent the hydrocarbon charge timing. 39^Ar recoil losses during 40^Ar/39^Ar dating can not be neglected when dating fine authigenic illite, especially when the ordered mixed-layer I/S containing small amount of smectite layers(IR30%) in the reservoir formations. Compared with the unencapsulated Ar-Ar method, the conventional K-Ar method is less complicated, more accurate and reliable in dating authigenic illites in petroleum reservoirs.
基金Supported by the CNPC Huabei Oilfield Science and Technology Development Project(HBYT-CYY-2014-JS-378,HBYT-CYY-2015-JS-47)
文摘The adsorption behavior of CO_2, CH_4 and their mixtures in bituminous coal was investigated in this study. First, a bituminous coal model was built through molecular dynamic(MD) simulations, and it was confirmed to be reasonable by comparing the simulated results with the experimental data. Grand Canonical Monte Carlo(GCMC)simulations were then carried out to investigate the single and binary component adsorption of CO_2 and CH_4with the built bituminous coal model. For the single component adsorption, the isosteric heat of CO_2 adsorption is greater than that of CH_4 adsorption. CO_2 also exhibits stronger electrostatic interactions with the heteroatom groups in the bituminous coal model compared with CH_4, which can account for the larger adsorption capacity of CO_2 in the bituminous coal model. In the case of binary adsorption of CO_2 and CH_4mixtures, CO_2 exhibits the preferential adsorption compared with CH_4 under the studied conditions. The adsorption selectivity of CO_2 exhibited obvious change with increasing pressure. At lower pressure, the adsorption selectivity of CO_2 shows a rapid decrease with increasing the temperature, whereas it becomes insensitive to temperature at higher pressure. Additionally, the adsorption selectivity of CO_2 decreases gradually with the increase of the bulk CO_2 mole fraction and the depth of CO_2 injection site.
文摘Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.
文摘In Greece more than 60,000 tn End of Life Tires are stockpiled every year often uncontrollable, causing severe environmental and other socio-economic negative impacts. Studies up to date are focused mainly on mechanical and physical characteristics of rubberized mixtures (based on cement, asphalt or soil) in which tire rubber is used either as alternative to natural aggregates or as additive. However, effect of tire rubber on noise reduction in rubberized bituminous layers, which is the main topic of present paper, has not been widely studied. In particular, this research paper is dealing with a sustainable use of tire rubber in asphalt pavement, leading to its generated noise reduction. An experimental pilot application has been conducted in the frame of a European Research Project, which has been implemented in a heavy traffic road section, cited outside Lamia city of Greece, (Vasilikon Street). The upper surface layer of the pavement has been made of rubberized bituminous mixture, produced by the wet process. Rheological characteristics of rubberized bitumen as well as basic properties of the implemented, rubberized bituminous mixture are presented. Moreover, measurements of noise level, deriving from vehicles’ motion, under operational conditions took place at the road section right after its implementation as well as after 8 months of its operation, while all data are presented in details. Results of the measurements on conventional and modified pavement sections are compared, certifying that rubberized asphalt layers can be not only environmentally friendly—since a category of solid wastes (worn automobile tires) is utilized—but also, addition of tire rubber particles in bituminous binder provides up to 3dB noise reducing bituminous mixtures and pavements, noise reduction that remains even after 8 months of road section’s operation.
基金Project 50204011 supported by the National Natural Science Foundation of China
文摘The influence of a pre-oxidation process on the chemical properties of crushed bituminous coal and on adsorption properties of the subsequently formed char and activated carbon is discussed in this paper. Datong bituminous coal samples sized 6 mm were oxidized at different temperatures and for different times and then carbonized and activated by steam to obtain activated carbons. A Uniform Design method was used to arrange the experiments,IR and adsorption experiments were used to characterize these oxidized coals,chars and activated carbon samples. The results show that the carboxyl group disappeared and α-CH2 groups joined to alkenes decreased dramatically but the carbonyl group clearly increased in the coal sample oxidized at 543 K; The chemical composition of coal samples oxidized at lower temperature is different from that of coal oxidized at 543 K. Oxidizing coal samples at higher temperatures for a short time or at lower temperatures for a longer time resulted in activated carbon samples that tended toward the same adsorption properties: Iodine number 1100 mg/g and Methylene blue value 252 mg/g. The yield of activated carbon obtained from the pre-oxidized coal is 10% higher than the yield from parent coal but the activated carbons have the same adsorption properties.
文摘Influence of co-firing rate on SO 2 emission from co-firing municipal solid waste(MSW) and bituminous containing high amount of sulfur(1.79%) was studied in a 0.15 MWt circulating fluidized bed(CFB). The temperature selected is 1123 K, typical for MSW incineration using CFB. The particle concentration in the dilution zone of the furnace, the alkali metal concentration and sulfate concentration in the recirculating ash and fly ash, and flue gas composition were determined. The results showed that the addition of MSW leads to a significant decrease in SO 2 emission. Concentration of SO 2 in flue gas decreased to 0 with the co-firing rate greater than 51%. This reduction in SO 2 emission is attributed both to the high particle concentration in the dilution zone of the furnace, the high content of alkali metals in the bed material, and to the comparatively high concentration of HCl in flue gas during co-firing of MSW and bituminous.
基金supported by Ankara University Scientific Research Projects Coordination Unit(Project No:09B4343013)
文摘In this study uranium and thorium contents and depositional characteristics of ay rhan bituminous shales( BS), west of Ankara(central Anatolia), are investigated. Samples used were collected from boreholes opened by Park Holding Ltd. A total of 25 samples were taken from bituminous shale levels in boreholes drilled at 6 different locations in the study area. The H rka formation which hosts bituminous shale deposits is a volcanosedimentary sequence and all lithofacies indicate that a lacustrine environment where the water level was continuously changed. In addition to hydrocarbon generation potential, bituminous shales also accumulate significant amount of radioactive elements such as uranium and thorium. The average uranium and thorium concentrations of BS(1.83/2.62 ppm) are much lower than averages of UC, NASK and PAAS(uranium: 2.70/2.66/3.10 ppm; thorium: 8.50/12.30/14.60 ppm). Low uranium contents in comparison to those of similar lacustrine environments might be attributed to that waters of depositional environment of BS contain low concentration of dissolved uranium and redox conditions were of oxic and dioxic character. Correlation data indicate that U and Th have a similar source and are associated predominantly with clays and phosphates and dominantly with organic material. Radioactive elements in the basin might be derived from Paleozoic granites and metamorphites(e.g. gneiss, schist) which comprise the basement and volcanism which was active in the region throughout the Miocene period. These elements are probably associated with uraniferous phosphate minerals(e.g. autunite, torbernite) which occur in granite, gneiss and schist. BS with average TOC content of 10.96 % shows very good/perfect source rock potential. Positive correlations between Gamma-Ray values and U, Th and K concentrations imply that radioactivity might be originated from these three elements.
文摘A high volatile bituminous coal was subjected to a series of organic acid treatment in steps using citric acid (1 hr and 2 hr) and buffered EDTA with acetic acid (1 to 3 hr) at room temperature. Leaching was performed with acetic acid (2N) also for 1 hr. Citric acid procedure reduced the mineral matter below 1.94%. Calcites and aluminates are completely removed along with substantial quantity of silicates by citric acid leaching. The change in absorption of organic functional groups and mineral matter in coal samples were studied using Fourier transform infrared spectroscopy (FTIR). Analysis indicated that oxygen containing species were decreased in the coal structure during acetic acid and citric acid (40%) procedure and buffered EDTA 3 hours leaching. As the period of leaching with buffered EDTA increased from 1 hr to 3 hr, organic functional groups and mineral functional groups decreased its intensity. The results indicated that the described acid treatment procedures with citric acid have measurable effects on the coal structure.