Bisphenol A(BPA)is an industrial pollutant that can cause immune impairment.Selenium acts as an antioxidant,as selenium deficiency often accompanies oxidative stress,resulting in organ damage.This study is the first t...Bisphenol A(BPA)is an industrial pollutant that can cause immune impairment.Selenium acts as an antioxidant,as selenium deficiency often accompanies oxidative stress,resulting in organ damage.This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell(MDCC-MSB-1)via oxidative stress-induced endoplasmic reticulum(ER)stress.We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days.The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities(T-AOC,CAT,and GSH-Px),accumulation of peroxides(H2O2 and MDA),significant upregulation of ER stress-relatedmarkers(GRP78,IER 1,PERK,EIF-2α,ATF4,and CHOP),a significant increase in iron ion levels,significant upregulation of pyroptosis-related gene(NLRP3,ASC,Caspase1,GSDMD,IL-18 and IL-1β),significantly increase ferroptosis-related genes(TFRC,COX2)and downregulate GPX4,HO-1,FTH,NADPH.In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results,demonstrating that the addition of antioxidant(NAC),ER stress inhibitor(TUDCA)and pyroptosis inhibitor(Vx765)alleviated oxidative stress,endoplasmic reticulum stress,pyroptosis,and ferroptosis.Overall,this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.展开更多
Bisphenol compounds(BPs)have various industrial uses and can enter the environment through various sources.To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity,Arabi...Bisphenol compounds(BPs)have various industrial uses and can enter the environment through various sources.To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity,Arabidopsis thaliana was exposed to bisphenol A(BPA),BPB,BPE,BPF,and BPS at 1,3,10 mg/L for a duration of 14 days,and their growth status were monitored.At day 14,roots and leaves were collected for internal BPs exposure concentration detection,RNA-seq(only roots),and morphological observations.As shown in the results,exposure to BPs significantly disturbed root elongation,exhibiting a trend of stimulation at low concentration and inhibition at high concentration.Additionally,BPs exhibited pronounced generation of reactive oxygen species,while none of the pollutants caused significant changes in root morphology.Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots,with BPS exhibiting the highest level of accumulation.The results of RNA-seq indicated that the shared 211 differently expressed genes(DEGs)of these 5 exposure groups were enriched in defense response,generation of precursormetabolites,response to organic substance,response to oxygen-containing,response to hormone,oxidation-reduction process and so on.Regarding unique DEGs in each group,BPS wasmainly associated with the redox pathway,BPB primarily influenced seed germination,and BPA,BPE and BPF were primarily involved in metabolic signaling pathways.Our results provide newinsights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.展开更多
Wastewater contains various high-risk trace organic pollutants,such as antibiotics and endocrine disruptors,which seriously restrict wastewater reuse.Cyclodextrin-based functional materials show great potential in the...Wastewater contains various high-risk trace organic pollutants,such as antibiotics and endocrine disruptors,which seriously restrict wastewater reuse.Cyclodextrin-based functional materials show great potential in the removal of trace pollutants because of their adsorption catalytic synergy.Clarifying the synergistic mechanism of cyclodextrin in oxidation is the key issue in confined catalytic oxidation process design.In this work,we fabricated a BiOIO_(3)@BiOBr/β-CD heterojunction photocatalyst to study the synergistic mechanism of cyclodextrin in the photocatalytic oxidation process.The synergistic mechanism of cyclodextrin was investigated by combining radical chemistry,electrochemistry,spectroscopy,and timedependent density functional theory.Results showed that the excited intermediate free radicals played an important role in promoting the photocatalytic degradation process.The heterojunction photocatalyst loaded withβ-cyclodextrin(β-CD)at the electronic end(C[Cat.]=0.2mg/mL)removed about 97%of bisphenol A(BPA)within 30min,and the first-order kinetic constant(k_(CDBIB)=0.112 min^(−1))was about twice that of the unloadedβ-CD(k_(BIB)=0.057 min^(−1)).Cyclodextrin loading improved the photocatalytic performance of the heterojunction and stimulated the intermediate to increase the free radical yield and regulate the reaction path.展开更多
Bisphenol A(BPA)is a recognized estrogenic endocrine disruptor that poses a threat to the reproductive health of fish.However,it remains unclear whether and how paternal BPA exposure can lead to developmental toxicity...Bisphenol A(BPA)is a recognized estrogenic endocrine disruptor that poses a threat to the reproductive health of fish.However,it remains unclear whether and how paternal BPA exposure can lead to developmental toxicity in offspring.To explore the potential paternal BPA exposure impacts on craniofacial cartilage growth in offspring,male rare minnows were subjected to BPA and subsequently mated with normal females to produce progeny.Our results demonstrated that paternal BPA exposure resulted in increased malformation and delayed craniofacial cartilage development in the F1 offspring.Furthermore,BPA exposure led to differential expression of 28 miRNAs in paternal sperm in F0 generation(13 upregulated and 15 downregulated),among which 7 miRNAs were involved in the regulation of bone development.BPA also downregulated the expression of bmp2a and Runx1 during F1 embryonic development.The inhibited bmp2a expression might derive from BPA's stimulation of one miRNA,aca-miR-16a-5P,due to bmp2a being one of its target genes.Notably,paternal BPA exposure did not affect craniofacial cartilage development or gonadal development in the F2 generation.Overall,our study sheds light on the molecular mechanisms underlying the impact of paternal BPA exposure on facial chondrogenesis in offspring and provides theoretical support for the ecological protection of fish populations.展开更多
Obesity,a chronic,complex disease characterized by excess fat deposits,has become a major public health issue worldwide.Epidemiological studies have demonstrated that obesity can result in a greater risk of several ha...Obesity,a chronic,complex disease characterized by excess fat deposits,has become a major public health issue worldwide.Epidemiological studies have demonstrated that obesity can result in a greater risk of several harmful outcomes,such as diabetes mellitus and cardiovascular diseases[1].展开更多
In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_...In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.展开更多
Phthalate(PAEs)and Bisphenols(BPs)are plasticizers or additives in consumer products.They are typical endocrine disruptors,and potential health hazards may occur when people are exposed to them through inhalation,inge...Phthalate(PAEs)and Bisphenols(BPs)are plasticizers or additives in consumer products.They are typical endocrine disruptors,and potential health hazards may occur when people are exposed to them through inhalation,ingestion,and dermal contact.The current research on inhalation exposure pays limited attention to the particle distribution of PAEs and BPs in air,although particulate-bound pollutants are usually size-dependent.In this study,we discussed the size resolution of PAEs and BPs in air particles from city waste recycling plants.With paired urine samples of the workers,we also compared the internal and external exposure of PAEs and BPs and related potential health risks.The particulatebound PAEs and BPs concentrated mainly on coarse particles(Dp>2.1μm),with a bimodal distribution,and the peak particle size ranged from 9–10 to 4.7–5.85μm,respectively.Model calculation revealed that the deposition fluxes of PAEs in different respiratory regions followed the sequence of head airways(167±92.8 ng/h)>alveolar region(18.9±9.96 ng/h)>tracheobronchial region(9.20±5.22 ng/h),and the similar trends went for BPs.The daily intakes of PAEs and BPs via dust ingestion were higher than those fromrespiratory inhalation and dermal contact,with mean value of 96 and 0.88 ng/(kg-bw day),respectively.For internal exposure,the estimated daily intakes of PAEs for waste recycling workers were higher than those in e-waste dismantling workers,while the exposure levels of bisphenols were comparable.Overall,the potential health risks from inhalation exposure to particulate-bound PAEs and BPs were low.展开更多
Endocrine disruptors such as bisphenol A(BPA)adversely affect the environment and human health.Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe man...Endocrine disruptors such as bisphenol A(BPA)adversely affect the environment and human health.Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner.However,the direct application of free laccases is generally hindered by short enzyme lifetimes,non-reusability,and the high cost of a single use.In this study,laccases were immobilized on a novel magnetic threedimensional poly(ethylene glycol)diacrylate(PEGDA)-chitosan(CS)inverse opal hydrogel(LAC@MPEGDA@CS@IOH).The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase.91.1%of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr,whereas only 50.6%of BPA was removed by the same amount of the free laccase.Compared with the laccase,the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures.Moreover,its relative activity of was maintained at 70.4%after 10 cycles,and the system performed well in actual water matrices.This efficientmethod for preparing immobilized laccases is simple and green,and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.展开更多
17β-Trenbolone(17-TB)is well documented as an environmental endocrine disruptor in aquatic biological studies,but its effects on mammals remain poorly understood.Furthermore,17-TB acts as a hormone with properties si...17β-Trenbolone(17-TB)is well documented as an environmental endocrine disruptor in aquatic biological studies,but its effects on mammals remain poorly understood.Furthermore,17-TB acts as a hormone with properties similar to testosterone,and the consequences of juvenile exposure on adult social behavior remain uncertain.Bisphenol A(BPA)acts as an estrogen-like hormone,compared to 17-TB.Three-week-old male Balb/c mice were exposed orally to 17-TB(100μg/(kg·day))and BPA(4 mg/(kg·day))for 28 days.Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice,intensified both male and female sexual behavior,and attracted and accepted female mice.It also increased social dominance through tube tests inmalemice and markedly activated the c-Fos^(+)immune response in themedial prefrontal cortex(mPFC)and basal amygdala(BLA).ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone(GnRH),growth hormone(GH),estradiol(E2),and luteinizing hormone(LH)levels,as well as testicular lesions and androgen receptor(ARβ)and estrogen receptor(ERα)synthesis.Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes.These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice,possibly through modulation of the hypothalamic-pituitary-gonadal axis.This study provides insights relevant to human reproductive health and neuro-social behavioral research,and the potential risk of environmental disturbances should not be overlooked.展开更多
ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high...ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.展开更多
Objective The aim of this study was to assess the impact of bisphenol A(BPA)and its substitute,bisphenol F(BPF),on the colonic fecal community structure and function of mice.Methods We exposed 6–8-week-old male C57BL...Objective The aim of this study was to assess the impact of bisphenol A(BPA)and its substitute,bisphenol F(BPF),on the colonic fecal community structure and function of mice.Methods We exposed 6–8-week-old male C57BL/6 mice to 5 mg/(kg∙day)and 50μg/(kg∙day)of BPA or BPF for 14 days.Fecal samples from the colon were analyzed using 16S rRNA sequencing.Results Gut microbiome community richness and diversity,species composition,and function were significantly altered in mice exposed to BPA or BPF.This change was characterized by elevated levels of Ruminococcaceae UCG-010 and Oscillibacter and decreased levels of Prevotella 9 and Streptococcus.Additionally,pathways related to carbohydrate and amino acid metabolism showed substantial enrichment.Conclusion Mice exposed to different BP analogs exhibited distinct gut bacterial community richness,composition,and related metabolic pathways.Considering the essential role of gut bacteria in maintaining intestinal homeostasis,our study highlights the intestinal toxicity of BPs in vertebrates.展开更多
Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite...Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.展开更多
Environmental pollution,such as water contamination,is a critical issue that must be absolutely addressed.Here,three different morphologies of tungsten-based photocatalysts(WO_(3)nanorods,WO_(3)/WS_(2)nanobricks,WO_(3...Environmental pollution,such as water contamination,is a critical issue that must be absolutely addressed.Here,three different morphologies of tungsten-based photocatalysts(WO_(3)nanorods,WO_(3)/WS_(2)nanobricks,WO_(3)/WS_(2)nanorods)are made using a simple hydrothermal method by changing the solvents(H_(2)O,DMF,aqueous HCl solution).The as-prepared nanocatalysts have excellent thermal stability,large porosity,and high hydrophilicity.The results show all materials have good photocatalytic activity in aqueous media,with WO_(3)/WS_(2)nanorods(NRs)having the best activity in the photodegradation of bisphenol A(BPA)under visible-light irradiation.This may originate from increased migration of charge carriers and effective prevention of electron–hole recombination in WO_(3)/WS_(2)NRs,whereby this photocatalyst is able to generate more reactive·OH and·O_(2)^(–)species,leading to greater photocatalytic activity.About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO_(3)/WS_(2)NRs and 5.0 mg/L BPA at pH 7.0.Additionally,the optimal conditions(pH,catalyst dosage,initial BPA concentration)for WO_(3)/WS_(2)NRs are also elaborately investigated.These rod-like heterostructures are expressed as potential catalysts with excellent photostability,efficient reusability,and highly active effectivity in different types of water.In particular,the removal efficiency of BPA by WO_(3)/WS_(2)NRs reduces by only 1.5% after five recycling runs and even reaches 89.1%in contaminated lake water.This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources,which is advantageous to various applications in environmental remediation.展开更多
Environmental endocrine disruptors,represented by bisphenol A(BPA),have been widely detected in the environment,bringing potential health risks to human beings.Nitrogen-containing biocarbon catalyst can activate perox...Environmental endocrine disruptors,represented by bisphenol A(BPA),have been widely detected in the environment,bringing potential health risks to human beings.Nitrogen-containing biocarbon catalyst can activate peroxymonosulfate(PMS)to degrade BPA in water,but its active sites remain opaque.Herein,in this work,nitrogen-containing biochar,i.e.,C–Nedge,enriched with graphitic-N defects at the edges was prepared by one-pot co-pyrolysis of chitosan and potassium carbonate.The results showed that the C–Nedge/PMS system can effectively degrade 98%of BPA(50 mg/L).The electron transfer based non-radical oxidation mechanism was responsible for BPA degradation.Edge graphitic-N doping endows biochar with strong electron transfer ability.The catalyst had good recovery and reuse performance.This catalytic oxidation was also feasible for other refractory pollutants removal and worked well for treating practical wastewater.This work may provide valuable information in unraveling the N doping configurationactivity relationship during activating PMS by biochar.展开更多
This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)ca...This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)calculations showed OA-UN-CN had narrower band gap,faster electron transport and a new internal construction electric field.Additionally,the prepared OA-UN-CN significantly enhanced photocatalytic activation of peroxymonosulfate(PMS)due to enhanced light absorption performance and faster electron overflow.As the result,the OA-UN-CN/PMS could entirely degrade bisphenol A(BPA)within 30 min,where the photodegradation rate was 81.8 and 7.9 times higher than that of g-C_(3)N_(4)and OA-UN-CN,respectively.Beyond,the OA-UN-CN/PMS could likewise degrade other bisphenol pollutants and sodium lignosulfonate efficiently.We suggested possible photocatalytic degradation pathways accordingly and explored the toxicity of its degradation products.This work provides a new idea on the development of advanced photocatalytic oxidation processes for the treatment of bisphenol pollutants and lignin derivatives,via a metal-free photothermal-catalyst.展开更多
Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explo...Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing.We found that maternal exposure to approximately 50μg/(kg·day)BPAF from postanal day(PND)0 to PND 15 altered the hypothalamic transcriptome,primarily involving the pathways and genes associated with extracellular matrix(ECM)and intercellular adhesion,neuroendocrine regulation,and neurological processes.Further RNA analysis confirmed the changes in the expression levels of concerned genes.Importantly,we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin(POMC)neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue.All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism.Interestingly,5000μg/(kg·day)BPAF caused slighter,non-significant or even inverse alterations than the low dose of 50μg/(kg·day),displaying a dose-independent effect.Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose.Overall,our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.展开更多
The present study reported fabrication of novel carbon quantum dots-MnFe_(2)O_(4)@ZIF-8(CQDs-MFO@ZIF-8)by using co-precipitation hydrothermal method for activation of peroxydisulfate(PDS)to degrade bisphenol A(BPA),on...The present study reported fabrication of novel carbon quantum dots-MnFe_(2)O_(4)@ZIF-8(CQDs-MFO@ZIF-8)by using co-precipitation hydrothermal method for activation of peroxydisulfate(PDS)to degrade bisphenol A(BPA),one of important emerging organic pollutants in water environment.CQDs-MFO@ZIF-8 served as a highly efficient thermal activated PDS catalyst with high catalytic degradation efficiency,reusability and stability.The catalyst achieved almost completely removal of 20.0 mg/L BPA within 5.0 min,and the degradation efficiency remained higher than 83%after 5 consecutive cycles.Free radicals(^(·)OH,SO_(4)^(·-)and^(·)O_(2)^(-))and non-free radicals((1)O_(2))were generated in the thermal PDS-activation system,in which singlet oxygen((1)O_(2))played a dominant role in the degradation of BPA.The potential toxicity of BPA degradation intermediates was analyzed upon the culture of E.coli and Chlorella sorokiniana by using Ecological Structure-Activity Relationship Model(ECOSAR)program.The catalytic performances of BPA degradation by CQDs-MFO@ZIF-8 were evaluated for treatment of different practical water samples to further verify the feasibility of practical applications.This study provides proof-in-concept demonstration of new nanomaterials for enhanced catalytic water decontamination.展开更多
In view of widespread existence and toxicity,removal and detection of bisphenols is imperative to asses environmental risks and reduce harm to human health.Although many techniques have been reported constructing fast...In view of widespread existence and toxicity,removal and detection of bisphenols is imperative to asses environmental risks and reduce harm to human health.Although many techniques have been reported constructing fast and sensitive method remains a challenge.Herein,porous poly(divinylbenzene)polyme was synthesized in-situ on the Fe_(3)O_(4)particles by means of distillation-precipitation polymerization and functioned as sorbents to extract bisphenols.Employing Fe_(3)O_(4)@poly(divinylbenzene)as sorbent,a mag netic solid-phase extraction coupling with liquid chromatography was developed to detect trace bisphe nols in water.This method presented low detection limits(0.01–0.03 ng/m L),high enrichment ability(en richment factor,327–343),and good reproducibility.Moreover,the method showed satisfactory recoverie in the detection of lake water(80.60%-116.2%)and egg sample(75.17%-120.0%).Impressively,Fe_(3)O_(4)@PDVB has excellent adsorption capacity,which can realize rapid kinetic adsorption of bisphenols with equi librium time all less than 10 s.The maximum adsorption capacities reached 1074.8,1049.7,1299.1 and 1329.5 mg/g for bisphenol F,bisphenol A,bisphenol B and bisphenol AF with Langmuir isotherm model The adsorption mechanism of Fe_(3)O_(4)@PDVB to bisphenols was investigated and demonstrated that hy drophobic interactions played a key role,together with assistance ofπ-πstacking interactions and hy drogen interactions.Overall,this work provides a promising sorbent material with ultra-fast and large adsorption capacities for extraction of bisphenols from water.展开更多
As a potential endocrine-disrupting chemical,bisphenol F(BPF)may cause nonalcoholic fatty liver disease(NAFLD)-like changes,but the mechanisms under its pathogenesis as well as the intervention strategies remain uncle...As a potential endocrine-disrupting chemical,bisphenol F(BPF)may cause nonalcoholic fatty liver disease(NAFLD)-like changes,but the mechanisms under its pathogenesis as well as the intervention strategies remain unclear.Using the electron microscopy technology,along with LipidTOX Deep Red neutral and Bodipy 493/503 staining assays,we observed that BPF treatment elicited a striking accumulation of lipid droplets in HepG2 cells,accompanied by an increased total level of triglycerides.At the molecular level,the lipogenesis-associated mRNAs and proteins,including acetyl-CoA carboxylase,fatty acid synthase,stearoyl-CoA desaturase-1,peroxisome proliferator-activated receptor gamma,and CCAAT-enhancer-binding proteins,increased significantly via the AMP-activated protein kinase(AMPK)-mammalian target of rapamycin(mTOR)signaling regulation in both in vitro and in vivo studies.Furthermore,the immunofluorescence results also showed the robust lipogenesis induced by BPF,evident in its ability to promote the translocation of sterol regulatory element-binding protein-1c from the cytoplasm to the nuclei.To investigate the intervention strategies for BPF-induced NAFLD-like changes,we demonstrated that bellidifolin,isolated and purified from Swertia chirayita,significantly attenuated BPF-induced lipid droplet deposition in HepG2 cells and NAFLD-like changes in mice by blocking the expression of lipogenesis-associated proteins.Therefore,the present study elucidates the mechanisms underlying the BPF-induced lipid accumulation in HepG2 cells,while also highlighting the potential of bellidifolin to mitigate BPF-induced NAFLD-like changes.展开更多
The construction and application of novel highly efficient photocatalysts have been the focus in the field of environmental pollutant removal.In this work,a novel CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)photocatalysts were s...The construction and application of novel highly efficient photocatalysts have been the focus in the field of environmental pollutant removal.In this work,a novel CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)photocatalysts were synthesized by simple hydrothermal and chemical precipitation method.The fabricated CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)composite exhibited much higher photocatalytic activity than pristine CuFe_(2)O_(4)and Bi_(12)O_(17)Cl_(2)in the removal of bisphenol A(BPA)under visible-light illumination,which ascribed to the intrinsic p-n junction of CuFe_(2)O_(4)and Bi_(12)O_(17)Cl_(2).The photocatalytic degradation rate of BPA on CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)with an optimized CuFe_(2)O_(4)content(1.0 wt.%)reached 93.0%within 30 min.The capture experiments of active species confirmed that the hydroxyl radicals(·OH)and superoxide radicals(·O_(2)^(-))played crucial roles in photocatalytic BPA degradation process.Furthermore,the possible degradation mechanism and pathways of BPA was proposed according to the detected intermediates in photocatalytic reaction process.展开更多
基金supported by the National Natural Science Foundation of China Regional Joint Innovation Fund (No.U22A20524)the Heilongjiang Province Natural Science Foundation Key projects (No.ZD2023C002).
文摘Bisphenol A(BPA)is an industrial pollutant that can cause immune impairment.Selenium acts as an antioxidant,as selenium deficiency often accompanies oxidative stress,resulting in organ damage.This study is the first to demonstrate that BPA and/or selenium deficiency induce pyroptosis and ferroptosis-mediated thymic injury in chicken and chicken lymphoma cell(MDCC-MSB-1)via oxidative stress-induced endoplasmic reticulum(ER)stress.We established a broiler chicken model of BPA and/or selenium deficiency exposure and collected thymus samples as research subjects after 42 days.The results demonstrated that BPA or selenium deficiency led to a decrease in antioxidant enzyme activities(T-AOC,CAT,and GSH-Px),accumulation of peroxides(H2O2 and MDA),significant upregulation of ER stress-relatedmarkers(GRP78,IER 1,PERK,EIF-2α,ATF4,and CHOP),a significant increase in iron ion levels,significant upregulation of pyroptosis-related gene(NLRP3,ASC,Caspase1,GSDMD,IL-18 and IL-1β),significantly increase ferroptosis-related genes(TFRC,COX2)and downregulate GPX4,HO-1,FTH,NADPH.In vitro experiments conducted in MDCC-MSB-1 cells confirmed the results,demonstrating that the addition of antioxidant(NAC),ER stress inhibitor(TUDCA)and pyroptosis inhibitor(Vx765)alleviated oxidative stress,endoplasmic reticulum stress,pyroptosis,and ferroptosis.Overall,this study concludes that the combined effects of oxidative stress and ER stress mediate pyroptosis and ferroptosis in chicken thymus induced by BPA exposure and selenium deficiency.
基金supported by the National Science Foundation of China (No.22106098)the Youth Science and Technology Research Foundation of Shanxi Province (No.20210302124298)+2 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Nos.2020L0174,and 2020L0025)the Startup Foundation for Doctors of Shanxi Province (No.SD1917)the Startup Foundation for Doctors of Shanxi Medical University (No.XD1917).
文摘Bisphenol compounds(BPs)have various industrial uses and can enter the environment through various sources.To evaluate the ecotoxicity of BPs and identify potential gene candidates involved in the plant toxicity,Arabidopsis thaliana was exposed to bisphenol A(BPA),BPB,BPE,BPF,and BPS at 1,3,10 mg/L for a duration of 14 days,and their growth status were monitored.At day 14,roots and leaves were collected for internal BPs exposure concentration detection,RNA-seq(only roots),and morphological observations.As shown in the results,exposure to BPs significantly disturbed root elongation,exhibiting a trend of stimulation at low concentration and inhibition at high concentration.Additionally,BPs exhibited pronounced generation of reactive oxygen species,while none of the pollutants caused significant changes in root morphology.Internal exposure concentration analysis indicated that BPs tended to accumulate in the roots,with BPS exhibiting the highest level of accumulation.The results of RNA-seq indicated that the shared 211 differently expressed genes(DEGs)of these 5 exposure groups were enriched in defense response,generation of precursormetabolites,response to organic substance,response to oxygen-containing,response to hormone,oxidation-reduction process and so on.Regarding unique DEGs in each group,BPS wasmainly associated with the redox pathway,BPB primarily influenced seed germination,and BPA,BPE and BPF were primarily involved in metabolic signaling pathways.Our results provide newinsights for BPs induced adverse effects on Arabidopsis thaliana and suggest that the ecological risks associated with BPA alternatives cannot be ignored.
基金supported by Program of Shanghai Outstanding Technology Leaders(No.20XD1433900)the National Natural Science Foundation of China(No.52370168).
文摘Wastewater contains various high-risk trace organic pollutants,such as antibiotics and endocrine disruptors,which seriously restrict wastewater reuse.Cyclodextrin-based functional materials show great potential in the removal of trace pollutants because of their adsorption catalytic synergy.Clarifying the synergistic mechanism of cyclodextrin in oxidation is the key issue in confined catalytic oxidation process design.In this work,we fabricated a BiOIO_(3)@BiOBr/β-CD heterojunction photocatalyst to study the synergistic mechanism of cyclodextrin in the photocatalytic oxidation process.The synergistic mechanism of cyclodextrin was investigated by combining radical chemistry,electrochemistry,spectroscopy,and timedependent density functional theory.Results showed that the excited intermediate free radicals played an important role in promoting the photocatalytic degradation process.The heterojunction photocatalyst loaded withβ-cyclodextrin(β-CD)at the electronic end(C[Cat.]=0.2mg/mL)removed about 97%of bisphenol A(BPA)within 30min,and the first-order kinetic constant(k_(CDBIB)=0.112 min^(−1))was about twice that of the unloadedβ-CD(k_(BIB)=0.057 min^(−1)).Cyclodextrin loading improved the photocatalytic performance of the heterojunction and stimulated the intermediate to increase the free radical yield and regulate the reaction path.
基金supported by the National Natural Science Foundation of China(No.31670523)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.23KJB180005)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230690)Jiangsu Ocean University Graduate Research and Practice Innovation Program Project(No.KYCX2023-105).
文摘Bisphenol A(BPA)is a recognized estrogenic endocrine disruptor that poses a threat to the reproductive health of fish.However,it remains unclear whether and how paternal BPA exposure can lead to developmental toxicity in offspring.To explore the potential paternal BPA exposure impacts on craniofacial cartilage growth in offspring,male rare minnows were subjected to BPA and subsequently mated with normal females to produce progeny.Our results demonstrated that paternal BPA exposure resulted in increased malformation and delayed craniofacial cartilage development in the F1 offspring.Furthermore,BPA exposure led to differential expression of 28 miRNAs in paternal sperm in F0 generation(13 upregulated and 15 downregulated),among which 7 miRNAs were involved in the regulation of bone development.BPA also downregulated the expression of bmp2a and Runx1 during F1 embryonic development.The inhibited bmp2a expression might derive from BPA's stimulation of one miRNA,aca-miR-16a-5P,due to bmp2a being one of its target genes.Notably,paternal BPA exposure did not affect craniofacial cartilage development or gonadal development in the F2 generation.Overall,our study sheds light on the molecular mechanisms underlying the impact of paternal BPA exposure on facial chondrogenesis in offspring and provides theoretical support for the ecological protection of fish populations.
基金supported in part by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.82304253).
文摘Obesity,a chronic,complex disease characterized by excess fat deposits,has become a major public health issue worldwide.Epidemiological studies have demonstrated that obesity can result in a greater risk of several harmful outcomes,such as diabetes mellitus and cardiovascular diseases[1].
基金supported by the National Natural Science Foundation of China(NSFC)(No.21978137).
文摘In this study,supported Pd catalysts were prepared and used as heterogeneous catalysts for the activation of peroxymonosulfate(PMS)which successfully degrade bisphenol F(BPF).Among the supported catalysts(i.e.,Pd/SiO_(2),Pd/CeO_(2),Pd/TiO_(2)and Pd/Al2O3),Pd/TiO_(2)exhibited the highest catalytic activity due to the high isoelectric point and high Pd0 content.Pd/TiO_(2)prepared by the deposition method leads to high Pd dispersion,which are the key factors for efficient BPF degradation.The influencing factors were investigated during the reaction process and two possible degradation pathways were proposed.Density functional theory(DFT)calculations demonstrate that stronger BPF adsorption and BPF degradation with lower reaction barrier occurs on smaller Pd particles.The catalytic activities are strongly dependent on the structural features of the catalysts.Both experiments and theoretical calculations prove that the reaction is actuated by electron transfer rather than radicals.
基金supported by the National Natural Science Foundation of China(No.22176071)the Natural Science Foundation of Guangdong Province,China(No.2023A1515011879).
文摘Phthalate(PAEs)and Bisphenols(BPs)are plasticizers or additives in consumer products.They are typical endocrine disruptors,and potential health hazards may occur when people are exposed to them through inhalation,ingestion,and dermal contact.The current research on inhalation exposure pays limited attention to the particle distribution of PAEs and BPs in air,although particulate-bound pollutants are usually size-dependent.In this study,we discussed the size resolution of PAEs and BPs in air particles from city waste recycling plants.With paired urine samples of the workers,we also compared the internal and external exposure of PAEs and BPs and related potential health risks.The particulatebound PAEs and BPs concentrated mainly on coarse particles(Dp>2.1μm),with a bimodal distribution,and the peak particle size ranged from 9–10 to 4.7–5.85μm,respectively.Model calculation revealed that the deposition fluxes of PAEs in different respiratory regions followed the sequence of head airways(167±92.8 ng/h)>alveolar region(18.9±9.96 ng/h)>tracheobronchial region(9.20±5.22 ng/h),and the similar trends went for BPs.The daily intakes of PAEs and BPs via dust ingestion were higher than those fromrespiratory inhalation and dermal contact,with mean value of 96 and 0.88 ng/(kg-bw day),respectively.For internal exposure,the estimated daily intakes of PAEs for waste recycling workers were higher than those in e-waste dismantling workers,while the exposure levels of bisphenols were comparable.Overall,the potential health risks from inhalation exposure to particulate-bound PAEs and BPs were low.
基金supported by the National Key Research and Development Program of China(Nos.2022YFC3703700 and 2021YFA0910300)the National Natural Science Foundation of China(No.22125606)the Special Project of Ecological Environmental Technology for Carbon Dioxide Emissions Peak and Carbon Neutrality(No.RCEES-TDZ-2021-21).
文摘Endocrine disruptors such as bisphenol A(BPA)adversely affect the environment and human health.Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner.However,the direct application of free laccases is generally hindered by short enzyme lifetimes,non-reusability,and the high cost of a single use.In this study,laccases were immobilized on a novel magnetic threedimensional poly(ethylene glycol)diacrylate(PEGDA)-chitosan(CS)inverse opal hydrogel(LAC@MPEGDA@CS@IOH).The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase.91.1%of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr,whereas only 50.6%of BPA was removed by the same amount of the free laccase.Compared with the laccase,the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures.Moreover,its relative activity of was maintained at 70.4%after 10 cycles,and the system performed well in actual water matrices.This efficientmethod for preparing immobilized laccases is simple and green,and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.
基金supported by the National Natural Science Foundation of China(Nos.62027812 and 62273186).
文摘17β-Trenbolone(17-TB)is well documented as an environmental endocrine disruptor in aquatic biological studies,but its effects on mammals remain poorly understood.Furthermore,17-TB acts as a hormone with properties similar to testosterone,and the consequences of juvenile exposure on adult social behavior remain uncertain.Bisphenol A(BPA)acts as an estrogen-like hormone,compared to 17-TB.Three-week-old male Balb/c mice were exposed orally to 17-TB(100μg/(kg·day))and BPA(4 mg/(kg·day))for 28 days.Assessments of social interactions and a three-chamber test showed that 17-TB increased virility in male mice,intensified both male and female sexual behavior,and attracted and accepted female mice.It also increased social dominance through tube tests inmalemice and markedly activated the c-Fos^(+)immune response in themedial prefrontal cortex(mPFC)and basal amygdala(BLA).ELISA data showed that 17-TB and BPA exposure significantly affected serum gonadotropin-releasing hormone(GnRH),growth hormone(GH),estradiol(E2),and luteinizing hormone(LH)levels,as well as testicular lesions and androgen receptor(ARβ)and estrogen receptor(ERα)synthesis.Testicular transcriptomic analysis further confirmed that could disrupt steroid synthesis and linoleic acid-related biometabolic processes.These findings suggest the influence of 17-TB and BPA exposure on sexual behavior and fertility in male mice,possibly through modulation of the hypothalamic-pituitary-gonadal axis.This study provides insights relevant to human reproductive health and neuro-social behavioral research,and the potential risk of environmental disturbances should not be overlooked.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2024LHMS05048).
文摘ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.
基金supported by the Open Fund of the State Key Laboratory of Environmental Chemistry and Ecotoxicology,Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences [No. KF2020-13]Guangxi Zhuang Autonomous Region Health and Family Planning Commission Self-Financed Scientific Research Project [No.Z20200208, Z-A20221124]Guangxi Medical and Health Key Discipline Construction Project (No. Department of Clinical Laboratory)。
文摘Objective The aim of this study was to assess the impact of bisphenol A(BPA)and its substitute,bisphenol F(BPF),on the colonic fecal community structure and function of mice.Methods We exposed 6–8-week-old male C57BL/6 mice to 5 mg/(kg∙day)and 50μg/(kg∙day)of BPA or BPF for 14 days.Fecal samples from the colon were analyzed using 16S rRNA sequencing.Results Gut microbiome community richness and diversity,species composition,and function were significantly altered in mice exposed to BPA or BPF.This change was characterized by elevated levels of Ruminococcaceae UCG-010 and Oscillibacter and decreased levels of Prevotella 9 and Streptococcus.Additionally,pathways related to carbohydrate and amino acid metabolism showed substantial enrichment.Conclusion Mice exposed to different BP analogs exhibited distinct gut bacterial community richness,composition,and related metabolic pathways.Considering the essential role of gut bacteria in maintaining intestinal homeostasis,our study highlights the intestinal toxicity of BPs in vertebrates.
基金Project(2108085ME184)supported by the Natural Science Foundation of Anhui Province,ChinaProject(2022AH010019)supported by the Innovation Team Project of Anhui Provincial Department of Education,China+1 种基金Project(GXXT-2021-057)supported by the Collaborative Innovation Project of Anhui Provincial Department of Education,ChinaProject(2020QDZ36)supported by the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University,China。
文摘Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.
基金The Vietnam National Foundation for Science and Technology Development(NAFOSTED)and the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(Grant No.NRF-2022R1A2C1012996)。
文摘Environmental pollution,such as water contamination,is a critical issue that must be absolutely addressed.Here,three different morphologies of tungsten-based photocatalysts(WO_(3)nanorods,WO_(3)/WS_(2)nanobricks,WO_(3)/WS_(2)nanorods)are made using a simple hydrothermal method by changing the solvents(H_(2)O,DMF,aqueous HCl solution).The as-prepared nanocatalysts have excellent thermal stability,large porosity,and high hydrophilicity.The results show all materials have good photocatalytic activity in aqueous media,with WO_(3)/WS_(2)nanorods(NRs)having the best activity in the photodegradation of bisphenol A(BPA)under visible-light irradiation.This may originate from increased migration of charge carriers and effective prevention of electron–hole recombination in WO_(3)/WS_(2)NRs,whereby this photocatalyst is able to generate more reactive·OH and·O_(2)^(–)species,leading to greater photocatalytic activity.About 99.6% of BPA is photodegraded within 60 min when using 1.5 g/L WO_(3)/WS_(2)NRs and 5.0 mg/L BPA at pH 7.0.Additionally,the optimal conditions(pH,catalyst dosage,initial BPA concentration)for WO_(3)/WS_(2)NRs are also elaborately investigated.These rod-like heterostructures are expressed as potential catalysts with excellent photostability,efficient reusability,and highly active effectivity in different types of water.In particular,the removal efficiency of BPA by WO_(3)/WS_(2)NRs reduces by only 1.5% after five recycling runs and even reaches 89.1%in contaminated lake water.This study provides promising insights for the nearly complete removal of BPA from wastewater or different water resources,which is advantageous to various applications in environmental remediation.
基金National Natural Science Foundation of China(No.51908172)“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C03149)。
文摘Environmental endocrine disruptors,represented by bisphenol A(BPA),have been widely detected in the environment,bringing potential health risks to human beings.Nitrogen-containing biocarbon catalyst can activate peroxymonosulfate(PMS)to degrade BPA in water,but its active sites remain opaque.Herein,in this work,nitrogen-containing biochar,i.e.,C–Nedge,enriched with graphitic-N defects at the edges was prepared by one-pot co-pyrolysis of chitosan and potassium carbonate.The results showed that the C–Nedge/PMS system can effectively degrade 98%of BPA(50 mg/L).The electron transfer based non-radical oxidation mechanism was responsible for BPA degradation.Edge graphitic-N doping endows biochar with strong electron transfer ability.The catalyst had good recovery and reuse performance.This catalytic oxidation was also feasible for other refractory pollutants removal and worked well for treating practical wastewater.This work may provide valuable information in unraveling the N doping configurationactivity relationship during activating PMS by biochar.
基金the National Natural Science Foundation of China(No.22076068,8111310014)(China)the University of Calgary’s Canada First Research Excellence Fund(CFREF)program(Canada)for financial support。
文摘This work uses thermal polymerization of urea nitrate,oxyacetic acid and urea as the raw material to prepare ultra-thin porous carbon nitride with carbon defects and C-O band(OA-UN-CN).Density functional theory(DFT)calculations showed OA-UN-CN had narrower band gap,faster electron transport and a new internal construction electric field.Additionally,the prepared OA-UN-CN significantly enhanced photocatalytic activation of peroxymonosulfate(PMS)due to enhanced light absorption performance and faster electron overflow.As the result,the OA-UN-CN/PMS could entirely degrade bisphenol A(BPA)within 30 min,where the photodegradation rate was 81.8 and 7.9 times higher than that of g-C_(3)N_(4)and OA-UN-CN,respectively.Beyond,the OA-UN-CN/PMS could likewise degrade other bisphenol pollutants and sodium lignosulfonate efficiently.We suggested possible photocatalytic degradation pathways accordingly and explored the toxicity of its degradation products.This work provides a new idea on the development of advanced photocatalytic oxidation processes for the treatment of bisphenol pollutants and lignin derivatives,via a metal-free photothermal-catalyst.
基金supported by the National Natural Science Foundation of China(No.21677166)the National Key Research and Development Program of China(No.2018YFA0901103)。
文摘Fragmented data suggest that bisphenol AF(BPAF),a chemical widely used in a variety of products,might have potential impacts on the hypothalamus.Here,we employed male neonatal mice following maternal exposure to explore the effects of low-dose BPAF on hypothalamic development by RNA-sequencing.We found that maternal exposure to approximately 50μg/(kg·day)BPAF from postanal day(PND)0 to PND 15 altered the hypothalamic transcriptome,primarily involving the pathways and genes associated with extracellular matrix(ECM)and intercellular adhesion,neuroendocrine regulation,and neurological processes.Further RNA analysis confirmed the changes in the expression levels of concerned genes.Importantly,we further revealed that low-dose BPAF posed a stimulatory impact on pro-opiomelanocortin(POMC)neurons in the arcuate nucleus of the hypothalamus and induced the browning of inguinal white adipose tissue.All findings indicate that developmental exposure to low-dose BPAF could interfere with hypothalamic development and thereby lead to alterations in the metabolism.Interestingly,5000μg/(kg·day)BPAF caused slighter,non-significant or even inverse alterations than the low dose of 50μg/(kg·day),displaying a dose-independent effect.Further observations suggest that the the dose-independent effects of BPAF might be associated with oxidative stress and inflammatory responses caused by the high dose.Overall,our study highlights a risk of low-dose BPAF to human neuroendocrine regulation and metabolism.
基金supported by the National Natural Science Foundation of China(Nos.52270074,52170039 and U22A20241)the National Key Research and Development Plan“Intergovernmental International Science and Technology Innovation Cooperation”(No.2022YFE0135700)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(No.LH2021E117)the financial support by the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020068)。
文摘The present study reported fabrication of novel carbon quantum dots-MnFe_(2)O_(4)@ZIF-8(CQDs-MFO@ZIF-8)by using co-precipitation hydrothermal method for activation of peroxydisulfate(PDS)to degrade bisphenol A(BPA),one of important emerging organic pollutants in water environment.CQDs-MFO@ZIF-8 served as a highly efficient thermal activated PDS catalyst with high catalytic degradation efficiency,reusability and stability.The catalyst achieved almost completely removal of 20.0 mg/L BPA within 5.0 min,and the degradation efficiency remained higher than 83%after 5 consecutive cycles.Free radicals(^(·)OH,SO_(4)^(·-)and^(·)O_(2)^(-))and non-free radicals((1)O_(2))were generated in the thermal PDS-activation system,in which singlet oxygen((1)O_(2))played a dominant role in the degradation of BPA.The potential toxicity of BPA degradation intermediates was analyzed upon the culture of E.coli and Chlorella sorokiniana by using Ecological Structure-Activity Relationship Model(ECOSAR)program.The catalytic performances of BPA degradation by CQDs-MFO@ZIF-8 were evaluated for treatment of different practical water samples to further verify the feasibility of practical applications.This study provides proof-in-concept demonstration of new nanomaterials for enhanced catalytic water decontamination.
基金sponsored by the National Natural Science Foundation of China(Nos.22076038 and 22376053)Henan key scientific research programs to Universities and Colleges(No.22ZX003)。
文摘In view of widespread existence and toxicity,removal and detection of bisphenols is imperative to asses environmental risks and reduce harm to human health.Although many techniques have been reported constructing fast and sensitive method remains a challenge.Herein,porous poly(divinylbenzene)polyme was synthesized in-situ on the Fe_(3)O_(4)particles by means of distillation-precipitation polymerization and functioned as sorbents to extract bisphenols.Employing Fe_(3)O_(4)@poly(divinylbenzene)as sorbent,a mag netic solid-phase extraction coupling with liquid chromatography was developed to detect trace bisphe nols in water.This method presented low detection limits(0.01–0.03 ng/m L),high enrichment ability(en richment factor,327–343),and good reproducibility.Moreover,the method showed satisfactory recoverie in the detection of lake water(80.60%-116.2%)and egg sample(75.17%-120.0%).Impressively,Fe_(3)O_(4)@PDVB has excellent adsorption capacity,which can realize rapid kinetic adsorption of bisphenols with equi librium time all less than 10 s.The maximum adsorption capacities reached 1074.8,1049.7,1299.1 and 1329.5 mg/g for bisphenol F,bisphenol A,bisphenol B and bisphenol AF with Langmuir isotherm model The adsorption mechanism of Fe_(3)O_(4)@PDVB to bisphenols was investigated and demonstrated that hy drophobic interactions played a key role,together with assistance ofπ-πstacking interactions and hy drogen interactions.Overall,this work provides a promising sorbent material with ultra-fast and large adsorption capacities for extraction of bisphenols from water.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.21KJA330002)Natural Science Foundation of Jiangsu Province(Grant No.BK20211252)+3 种基金Young and Middle-aged Academic Leaders of the"Blue Project"in Jiangsu Universities(2022-2)Jiangsu Health and Family Planning Commission Medical Research Program(Grant No.Z2018035)Project of Public Health Research Center of Jiangnan University(Grant No.JUPH201842)Natural Science Foundation of Nanjing University of Chinese Medicine(Grant No.XZR2020021).
文摘As a potential endocrine-disrupting chemical,bisphenol F(BPF)may cause nonalcoholic fatty liver disease(NAFLD)-like changes,but the mechanisms under its pathogenesis as well as the intervention strategies remain unclear.Using the electron microscopy technology,along with LipidTOX Deep Red neutral and Bodipy 493/503 staining assays,we observed that BPF treatment elicited a striking accumulation of lipid droplets in HepG2 cells,accompanied by an increased total level of triglycerides.At the molecular level,the lipogenesis-associated mRNAs and proteins,including acetyl-CoA carboxylase,fatty acid synthase,stearoyl-CoA desaturase-1,peroxisome proliferator-activated receptor gamma,and CCAAT-enhancer-binding proteins,increased significantly via the AMP-activated protein kinase(AMPK)-mammalian target of rapamycin(mTOR)signaling regulation in both in vitro and in vivo studies.Furthermore,the immunofluorescence results also showed the robust lipogenesis induced by BPF,evident in its ability to promote the translocation of sterol regulatory element-binding protein-1c from the cytoplasm to the nuclei.To investigate the intervention strategies for BPF-induced NAFLD-like changes,we demonstrated that bellidifolin,isolated and purified from Swertia chirayita,significantly attenuated BPF-induced lipid droplet deposition in HepG2 cells and NAFLD-like changes in mice by blocking the expression of lipogenesis-associated proteins.Therefore,the present study elucidates the mechanisms underlying the BPF-induced lipid accumulation in HepG2 cells,while also highlighting the potential of bellidifolin to mitigate BPF-induced NAFLD-like changes.
基金the financial support from the National Natural Science Foundation of China (No.21964006)the Changsha Science and Technology Planning Project (No.kq2203003)+2 种基金the Natural Science Foundation of Hunan Province (No.2020JJ4640)the Scientific Research Fund of Hunan Provincial Education Department (No.20A050)the Scientific Research Found of Changsha University (No.SF1934)。
文摘The construction and application of novel highly efficient photocatalysts have been the focus in the field of environmental pollutant removal.In this work,a novel CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)photocatalysts were synthesized by simple hydrothermal and chemical precipitation method.The fabricated CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)composite exhibited much higher photocatalytic activity than pristine CuFe_(2)O_(4)and Bi_(12)O_(17)Cl_(2)in the removal of bisphenol A(BPA)under visible-light illumination,which ascribed to the intrinsic p-n junction of CuFe_(2)O_(4)and Bi_(12)O_(17)Cl_(2).The photocatalytic degradation rate of BPA on CuFe_(2)O_(4)/Bi_(12)O_(17)Cl_(2)with an optimized CuFe_(2)O_(4)content(1.0 wt.%)reached 93.0%within 30 min.The capture experiments of active species confirmed that the hydroxyl radicals(·OH)and superoxide radicals(·O_(2)^(-))played crucial roles in photocatalytic BPA degradation process.Furthermore,the possible degradation mechanism and pathways of BPA was proposed according to the detected intermediates in photocatalytic reaction process.