Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy a...Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization.展开更多
Bird swarm algorithm(BSA), a novel bio-inspired algorithm, has good performance in solving numerical optimization problems. In this paper, a new improved bird swarm algorithm is conducted to solve unconstrained optimi...Bird swarm algorithm(BSA), a novel bio-inspired algorithm, has good performance in solving numerical optimization problems. In this paper, a new improved bird swarm algorithm is conducted to solve unconstrained optimization problems. To enhance the performance of BSA, handling boundary constraints are applied to fix the candidate solutions that are out of boundary or on the boundary in iterations, which can boost the diversity of the swarm to avoid the premature problem. On the other hand, we accelerate the foraging behavior by adjusting the cognitive and social components the sin cosine coefficients. Simulation results and comparison based on sixty benchmark functions demonstrate that the improved BSA has superior performance over the BSA in terms of almost all functions.展开更多
基金supported by the National Natural Science Foundation of China (No. 52061635103)
文摘Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization.
基金Supported by the National Natural Science Foundation of China(11871383,71471140 and 11771058)
文摘Bird swarm algorithm(BSA), a novel bio-inspired algorithm, has good performance in solving numerical optimization problems. In this paper, a new improved bird swarm algorithm is conducted to solve unconstrained optimization problems. To enhance the performance of BSA, handling boundary constraints are applied to fix the candidate solutions that are out of boundary or on the boundary in iterations, which can boost the diversity of the swarm to avoid the premature problem. On the other hand, we accelerate the foraging behavior by adjusting the cognitive and social components the sin cosine coefficients. Simulation results and comparison based on sixty benchmark functions demonstrate that the improved BSA has superior performance over the BSA in terms of almost all functions.