Inspired by the self-healing function of biological organisms,Bionic Laser Alloying(BLA)process was adopted to fabricate the bionic self-healing Thermal Barrier Coatings(TBCs).The BLA with different fractions of TiAl3...Inspired by the self-healing function of biological organisms,Bionic Laser Alloying(BLA)process was adopted to fabricate the bionic self-healing Thermal Barrier Coatings(TBCs).The BLA with different fractions of TiAl3 self-healing agent and Ceria and Yttria-Stabilized Zirconia(CYSZ)on the plasma-sprayed 7YSZ TBCs was carried out by a pulsed Nd:YAG laser.The effect of TiAl3 content on the microstructure,phase composition,and thermal shock behaviors of the bionic self-healing TBCs were investigated.Results indicated that the bionic self-healing TBCs had better thermal shock resistance than that of the as-sprayed TBCs.The thermal shock resistance increased first and then decreased with increasing TiAl3 fraction.The thermal shock resistance of the bionic self-healing TBCs with 15%TiAl3 is triple that of the as-sprayed TBCs.On one hand,the columnar crystals and vertical cracks could improve strain compatibility of TBCs during the thermal shock process;on the other hand,the TiAl3 as a self-healing agent reacted with oxygen in air at high temperature to seal the microcracks,thereby delaying the crack connection.展开更多
Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical enginee...Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical engineering.Unfortunately,the poor corrosion resistance of Mg-alloys limits their wide acceptance.Advanced composite coatings which are self-healing,superhydrophobic anti corrosive,and wear resistant are new synthetic materials for abating these challenges.The superimposed superhydrophobic surfaces help in minimizing their water contact,thus slowing down the electrochemical reactions on the surface of the alloys,while their self-healing characteristics autonomously aid in the repair of any induced micro-crack,defect or damage towards ensuring the metal's long-term protection.In addition,the integration of wear-resistant materials further improves the durability of coatings under mechanical stress.The most recent research efforts have been directed towards the preparation of multifunctional composites,with an emphasis on nanomaterials,functional polymers,and state-of-the-art fabrication techniques in order to take advantage of their synergistic effects.Some of the methods that have so far exhibited promising potentials in fabricating these materials include the sol-gel method,layer-by-layer assembly,and plasma treatments.However,most of the fabricated products are still faced with significant challenges ranging from long-term stability to homogeneous adhesion of the coatings and their scalability for industrial applications.This review discusses the recent progress and the relationship between corrosion inhibition and self-healing efficiencies of wear resistant polymer nanocomposite coatings.Some challenges related to optimizing coating performance were also discussed.In addition,future directions ranging from the consideration of bioinspired designs,novel hybrid nanocomposite materials,and environmentally sustainable solutions integrated with smart protective coatings were also proposed as new wave technologies that can potentially revolutionize the corrosion protection offered by Mg alloys while opening up prospects for improved performance and sustainability.展开更多
This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and...This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and interfacial healing strength were analyzed using molecular dynamics and macroscopic tests under different time,temperature,and water conditions to evaluate the specific states and critical conditions involved in self-healing.The results indicate that basalt-fiber molecules can induce rearrangement and a combination of water-soaked asphalt at the healing interface.Hydroxyl groups with different bonding states increase the interfacial adsorption capacity of water-soaked asphalt.The interaction between basalt fiber molecules and water molecules leads to a"hoop"phenomenon,while aromatics-2 molecules exhibit a"ring band aggregation"phenomenon.The former reduces the miscibility of water and asphalt molecules,while the latter causes slow diffusion of the components.Furthermore,a micro-macro dual-scale comparison of interfacial healing strength was conducted at temperatures of 297.15 and 312.15 K to identify the strength transition point and critical temperature of 299.4 K during the self-healing process of basalt-fiber modified water-soaked asphalt.展开更多
Coatings of marine equipment inevitably suffer from physical or chemical damage in service,together with biofouling from microbial attachment,leading to a shorter service life of them.Herein,a multi-functional corrosi...Coatings of marine equipment inevitably suffer from physical or chemical damage in service,together with biofouling from microbial attachment,leading to a shorter service life of them.Herein,a multi-functional corrosion-resistant coating with efficient photothermal self-healing and anti-biofouling per-formance was designed by using CuO/g-C_(3)N_(4)(CuO/CN)S-scheme heterojunction filler in combination with polydimethylsiloxane(PDMS)as the coating matrix for achieving the effective protection of Q235 steel.The results of the electrochemical impedance spectroscopy(EIS)experiments indicate that the CuO/CN/PDMS composite coatings possessed excellent corrosion resistance,in which the impedance ra-dius of optimal CuO/CN-1/PDMS composite coating could still remain 3.49×10^(9)Ωcm^(2)after 60 d of immersion in seawater under sunlight irradiation.Meanwhile,the as-prepared CuO/CN/PDMS compos-ite coating not only can be rapidly heated up under the Xenon lamp illumination to achieve complete self-repair of scratches within 45 min,but also exhibited excellent antimicrobial effects in the antifouling experiments.This study opens a new avenue for the development of g-C_(3)N_(4)-based multifunctional coat-ings and provides guidance for the development of the next generation of intelligent protective coatings.展开更多
Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coa...Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings.展开更多
Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,gr...Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.展开更多
Conventional hydrogels exhibit good performance in various biomedical applications.They consist of a three-dimensional network with porous structures that are constructed from synthetic or natural polymers through phy...Conventional hydrogels exhibit good performance in various biomedical applications.They consist of a three-dimensional network with porous structures that are constructed from synthetic or natural polymers through physical or chemical crosslinking.However,a critical challenge lies in their vulnerability to mechanical damage,as conventional hydrogels often fail to maintain structural integrity under minor trauma.In response to this issue,self-healing hydrogels can autonomously repair themselves after damage,restoring their original functionality without needing external intervention.This remarkable capability significantly extends the lifespan of critical products,including wound dressings,biosensors,drug delivery and tissue engineering scaffolds.This review summarizes the synthesis mechanisms while emphasizing the latest application research advancements.By highlighting the distinct benefits of self-healing hydrogels,we systematically review recent progress in synthesis methods.Our goal is to provide valuable insights that will help researchers in designing and developing more efficient self-healing hydrogels,paving the way for enhanced biomedical solutions.展开更多
A two-step approach was employed to create a composite coating consisting of TiO_(2)nanoparticles and extremely elastic polydimethylsiloxane(PDMS).The TiO_(2)-PDMS composite coating demonstrates exceptional superhydro...A two-step approach was employed to create a composite coating consisting of TiO_(2)nanoparticles and extremely elastic polydimethylsiloxane(PDMS).The TiO_(2)-PDMS composite coating demonstrates exceptional superhydrophobicity and antifouling efficacy,as evidenced by the static contact angle,contact angle hysteresis,and antifouling tests.The electron microscopic analysis reveals that the composite coating consists of TiO_(2)particles and agglomerates,which forms a dual-level roughness structure at the nanometer and micron scales.This unique structure promotes the Cassie-Baxter state of the coating when in contact with the liquid,resulting in an increased static contact angle and a reduced contact angle hysteresis.The PDMS primer facilitates the attachment of TiO_(2)particles,resulting in a composite coating with excellent scratch-resistant characteristics.Additionally,the PDMS primer possesses the capacity to retain low surface energy modifiers.Simultaneously,the PDMS primer serves as a reservoir for a low surface energy modifier,enhancing the self-repairing properties of the TiO_(2)-PDMS composite coating.This composite coating exhibits effective self-cleaning capabilities against many forms of contaminants,including liquids,solids,and slurries.展开更多
An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars in...An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars incorporating crystalline admixtures(CAs)under various conditions,including water immersion,limewater soaking,and wet-dry cycles,with varying CA dosages and crack widths.The experimental results indicate that cement possesses inherently self-healing capability.Limewater environments inhibits healing compared with water immersion;however,wet-dry cycles enhance the effectiveness of higher CA dosages.Increasing the CA content can not improve healing performance,and wide cracks(0.3 mm)substantially reduce the intrinsic self-healing potential of cement.展开更多
Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an opt...Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an optimal balance among these properties remains a significant challenge.Herein,through in situ free-radical copolymerization of 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate(TEEA)and vinylimidazole(VI)in the presence of polyethylene glycol(PEG;Mn=400),tough P(TEEA-co-VI)/PEG elastomers with multiple functionalities were prepared,in which P(TEEA-co-VI)was dynamically cross-linked by imidazole-Zn^(2+)metal coordination crosslinks,and physically blended with PEG as polymer electrolyte to form a homogeneous mixture.Notably,Zn^(2+)has a negligible impact on the polymerization process,allowing for the in situ formation of numerous imidazole-Zn^(2+)metal coordination crosslinks,which can effectively dissipate energy upon stretching to largely reinforce the elastomers.The obtained P(TEEA-co-VI)/PEG elastomers exhibited a high toughness of 10.0 MJ·m^(-3) with a high tensile strength of 3.3 MPa and a large elongation at break of 645%,along with outstanding self-healing capabilities due to the dynamic coordination crosslinks.Moreover,because of the miscibility of PEG with PTEEA copolymer matrix,and Li+can form weak coordination interactions with the ethoxy(EO)units in PEG and PTEEA,acting as a bridge to integrate PEG into the elastomer network.The resulted P(TEEA-co-VI)/PEG elastomers showed high transparency(92%)and stable high conductivity of 1.09×10_(-4) S·cm^(-1).In summary,the obtained elastomers exhibited a well-balanced combination of high toughness,high ionic conductivity,excellent self-healing capabilities,and high transparency,making them promising for applications in flexible strain sensors.展开更多
Smart materials with self-healing properties are highly desired.This study investigates graphene-incorporated styrene-isoprene-styrene(SIS)nanocomposites for their self-healing property assisted by Infrared(IR)and mic...Smart materials with self-healing properties are highly desired.This study investigates graphene-incorporated styrene-isoprene-styrene(SIS)nanocomposites for their self-healing property assisted by Infrared(IR)and microwave radiation.The good thermal conductivity and energy-absorbing capacity of graphene offer self-healing capability to SIS/GnP nanocomposites due to their exposure to IR and microwave radiation.The absorbed energy in graphene is transferred to the SIS matrix,facilitating the diffusion,re-entanglement,and restoration of the SIS polymer chains,resulting in multiple times self-healing capabilities using various external stimuli.All SIS/GnP nanocomposite samples exhibit self-healing behavior,and the healing efficiency rises with increasing GnP content in the nanocomposites and healing time.The cut mark on the SIS/GnP nanocomposite sample(having 10 wt.%of GnP)entirely disappears when the sample is placed in contact with IR radiation(at 250 W)for 10 min.In addition,the sample is completely healed when exposed to microwave radiation(at 900 W)for less than 30 s.The good dispersion of the graphene nanoplates in the SIS matrix was observed in SEM micrographs.Strong interfacial interactions between the SIS copolymer chains and exfoliated graphene(GnP)due toπ-πstacking stabilize graphene dispersion against agglomeration.The effect of graphene nanoplates on the SIS thermoplastic elastomer’s thermal stability and phase transition is also studied by Thermo-gravimetric analysis(TGA)and Differential Scanning Calorimetry(DSC)analysis.展开更多
Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile stren...Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile strength and susceptibility to fracture because of the restricted microstructure design.Herein,we pro-pose a hydrothermal-freeze-thaw method to construct high-strength self-healing hydrogels with even in-terconnected networks and distinctive wrinkled surfaces.The integration of the wrinkled outer surface with the three-dimensional internal network confers the self-healing hydrogel with enhanced mechan-ical strength.This hydrogel achieves a tensile strength of 223 kPa,a breaking elongation of 442%,an adhesion strength of 57.6 kPa,and an adhesion energy of 237.2 J m-2.Meanwhile,the hydrogel demon-strates impressive self-repair capability(repair efficiency:93%).Moreover,the density functional theory(DFT)calculations are used to substantiate the stable existence of hydrogen bonding between the PPPBG hydrogel and water molecules which ensures the durability of the PPPBG hydrogel for long-term applica-tion.The measurements demonstrate that this multifunctional hydrogel possesses the requisite sensitivity and durability to serve as a strain sensor,which monitors a spectrum of motion signals including subtle vocalizations,pronounced facial expressions,and limb articulations.This work presents a viable strategy for healthcare monitoring,soft robotics,and interactive electronic skins.展开更多
Supramolecular materials that combine toughness,transparency,self-healing,and environmental stability are crucial for advanced applications,such as flexible electronics,wearable devices,and protective coatings.However...Supramolecular materials that combine toughness,transparency,self-healing,and environmental stability are crucial for advanced applications,such as flexible electronics,wearable devices,and protective coatings.However,integrating these properties into a single system remains challenging because of the inherent trade-offs between the mechanical strength,elasticity,and structural reconfigurability.Herein,we report a supramolecular ionogel designed via a simple one-step polymerization strategy that combines hydrogen bonding and ion-dipole interactions in a physically crosslinked network.This dual-interaction architecture enables the ionogel to achieve high tensile strength(9 MPa),remarkable fracture toughness(23.6 MJ·m^(−3)),and rapid self-healing under mild thermal stimulation.The material remains highly transparent and demonstrates excellent resistance to moisture,acid,and salt environments,with minimal swelling and performance degradation.Furthermore,it effectively dissipates over 80 MJ·m^(−3) of energy during high-speed impacts,providing reliable protection to fragile substrates.This study offers a broadly applicable molecular design framework for resilient and adaptive soft materials.展开更多
This study aims to investigate the intrinsic repair behavior of asphalt using molecular dynamics simulation.The Materials Studio software was employed to construct a virgin asphalt and SBS modified asphalt.The evaluat...This study aims to investigate the intrinsic repair behavior of asphalt using molecular dynamics simulation.The Materials Studio software was employed to construct a virgin asphalt and SBS modified asphalt.The evaluation of the two types of asphalt included diffusion coefficient,activation energy of diffusion,and pre-exponential factor.The self-healing performance of both virgin asphalt and SBS modified asphalt was then analyzed and verified through fatigue shear-healing tests.The molecular dynamics results indicate that the self-healing properties of both asphalts improve with increasing temperature.The time required for the cracked area to be filled was found to be shorter than the time needed for the asphalt material to recover its mechanical properties.Furthermore,the activation energy of diffusion for SBS modified asphalt was slightly higher compared to that of virgin asphalt,as observed in the experimental results.The self-healing speed and collision frequency of SBS modified asphalt were both faster than those of virgin asphalt,indicating that the self-healing performance of SBS modified asphalt is superior overall.展开更多
The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabili...The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabilities.Herein,a novel vinyl-based ionic liquid[VEMIM^(+)][Cl^(−)](IL)was in situ polymerized and then assembled onto the surface of liquid metal(GLM)nanodroplets to prepare GLM-IL.Subsequently,Ti_(3)C_(2)Tx(MXene)was modified with GLM-IL nanodroplets to obtain GLM-IL/MXene composite,which acts as an efficient photon captor and photothermal converters and can be further composited with PU film(GLM-IL/MXene/PU).Notably,the composite film significantly increases by∼117℃after exposure to 200 mW/cm2 light irradiation.This increase is attributed to the high photothermal conversion efficiency of MXene and the excellent plasma effect of GLM-IL.Compared with pure PU,the GLM-IL/MXene/PU film shows a 50%improvement in tensile strength and above 85.8%healing efficiency with a local temperature increase.Additionally,the as-prepared GLM-IL/MXene/PU film reveals satisfactory antifouling properties,achieving a 99.7%reduction in bacterial presence and an 80.3%reduction in microalgae.This work introduces a novel coating with antifouling and self-healing properties,offering a wide range of applications in the fields of marine antifouling and biomedicine.展开更多
The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-heali...The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs.展开更多
The self-healing properties of dual-component epoxy microcapsules are evaluated when incorporated into an epoxy coating.The performance of the coating was assessed under immersion in a saline solution,simulating seawa...The self-healing properties of dual-component epoxy microcapsules are evaluated when incorporated into an epoxy coating.The performance of the coating was assessed under immersion in a saline solution,simulating seawater conditions.Initially,synthesized microcapsules are incorporated into the epoxy coating.Then,the self-healing capabilities of the coating are studied under immersion using scanning vibrating electrode technique(SVET),open circuit potential(OCP),electrochemical impedance spectroscopy(EIS)and immersion corrosion test on coated samples with intentionally created artificial defects.The last three tests were conducted in a 3.5%NaCl solution.The adhesion of the coating is also studied by pull-off adhesion test.SVET analyses reveal lower ionic current densities in coated samples containing microcapsules during 24 h of immersion.EIS results demonstrate self-healing at the defect site for up to 12 h of immersion.After this time,the corrosion protection diminishes with prolonged immersion in the saline solution.Despite this,the coating with the microcapsules exhibits decrease in the corrosion process compared to the coating without the microcapsules.These results are consistent and complement the outcomes of the immersion tests conducted over 360 and 1056 h,which indicate that coated samples without microcapsules exhibit double the corroded areas around the scribes compared to coated samples containing the microcapsules.These findings offer a promising outlook for applying this coating on offshore carbon steel structures under immersion aiming for a longer lifetime with less maintenance intervention.展开更多
The construction industry faces significant challenges due to the inherent brittleness and cracking tendency of traditional concrete,which compromises structural durability and necessitates frequent,costly repairs.Thi...The construction industry faces significant challenges due to the inherent brittleness and cracking tendency of traditional concrete,which compromises structural durability and necessitates frequent,costly repairs.This paper explores the groundbreaking development of self-healing concrete as a transformative material technology for sustainable architecture.We examine three primary autogenous healing mechanisms:encapsulated polymer/microbial healing agents,vascular networks,and shape memory alloys.Through a review of recent laboratory experiments and pilot projects,this study analyzes the crack-sealing efficiency,recovery of mechanical properties,and long-term durability of these materials.A comparative case study of a demonstration building facade incorporating microbial self-healing concrete is presented,showing a potential 30%reduction in maintenance costs over a 20-year lifecycle.The findings indicate that self-healing concrete not only enhances structural resilience but also significantly reduces the carbon footprint associated with building maintenance,aligning with the core principles of sustainable development.The paper concludes by discussing current limitations in mass production and cost-effectiveness and proposes directions for future research to facilitate widespread adoption in architectural engineering.展开更多
With the exponential growth of portable electronic devices and wearable technologies,batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety a...With the exponential growth of portable electronic devices and wearable technologies,batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety and exceptional durability.Inspired by the self-repair mechanism observed in natural systems,a self-healing strategy shows great application potential in enabling batteries to resist external physical and chemical damage.In this review,we provide a detailed exploration of the application of self-healing materials in battery components,including electrodes,electrolytes,and encapsulation layers.We also analyze the advantages and limitations of various self-healing mechanisms,highlighting their roles in optimizing battery performance.By presenting a comprehensive synthesis of existing research,the potential pathways for advancing the development of self-healing batteries are identified,as well as the key challenges and opportunities within this field.This review aims to promote the practical integration of self-healing batteries in smart and flexible electronic devices,paving the way for safer,more reliable,and long-lasting energy storage systems.展开更多
Electromagnetic interference shielding materials are inevitably damaged during service,causing a serious decline in their shielding performance.Therefore,it is urgent to develop polymer-based composites with excellent...Electromagnetic interference shielding materials are inevitably damaged during service,causing a serious decline in their shielding performance.Therefore,it is urgent to develop polymer-based composites with excellent electromagnetic shielding and self-healing properties.In this study,a layered foam/film structure polycaprolactone composite characterized by electric/magnetic bifunctionality was constructed by a hot-pressing process and supercritical carbon dioxide foaming.The microcellular framework offers rich heterogeneous interfaces and improves electromagnetic attenuation capabilities.Such a reasonable construction of asymmetric shielding networks optimizes the impedance matching,while the incident electromagnetic waves form a special attenuation mode of“absorption-reflection-reabsorption”.The polycaprolactone composite foam exhibits an excellent electromagnetic interference shielding effectiveness of 53.6 dB in the X-band and a low reflection value of only 0.36,effectively reducing secondary pollution.In addition,the damaged polycaprolactone composite foam exhibits over 93%electromagnetic interference shielding effectiveness and healing efficiency,ensuring the long-term stability of the material in practical applications.展开更多
基金supported by National Natural Science Foundation of China(Grant No.52105311)Natural Science Foundation of Zhejiang Province(Grant No.LQ21E010002)Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-A2020009).
文摘Inspired by the self-healing function of biological organisms,Bionic Laser Alloying(BLA)process was adopted to fabricate the bionic self-healing Thermal Barrier Coatings(TBCs).The BLA with different fractions of TiAl3 self-healing agent and Ceria and Yttria-Stabilized Zirconia(CYSZ)on the plasma-sprayed 7YSZ TBCs was carried out by a pulsed Nd:YAG laser.The effect of TiAl3 content on the microstructure,phase composition,and thermal shock behaviors of the bionic self-healing TBCs were investigated.Results indicated that the bionic self-healing TBCs had better thermal shock resistance than that of the as-sprayed TBCs.The thermal shock resistance increased first and then decreased with increasing TiAl3 fraction.The thermal shock resistance of the bionic self-healing TBCs with 15%TiAl3 is triple that of the as-sprayed TBCs.On one hand,the columnar crystals and vertical cracks could improve strain compatibility of TBCs during the thermal shock process;on the other hand,the TiAl3 as a self-healing agent reacted with oxygen in air at high temperature to seal the microcracks,thereby delaying the crack connection.
文摘Magnesium and its alloys have gained relevance for their light-weight combined with a high value of strength-to-weight ratio,which makes them useful in fields such as aerospace,automotive as well as biomedical engineering.Unfortunately,the poor corrosion resistance of Mg-alloys limits their wide acceptance.Advanced composite coatings which are self-healing,superhydrophobic anti corrosive,and wear resistant are new synthetic materials for abating these challenges.The superimposed superhydrophobic surfaces help in minimizing their water contact,thus slowing down the electrochemical reactions on the surface of the alloys,while their self-healing characteristics autonomously aid in the repair of any induced micro-crack,defect or damage towards ensuring the metal's long-term protection.In addition,the integration of wear-resistant materials further improves the durability of coatings under mechanical stress.The most recent research efforts have been directed towards the preparation of multifunctional composites,with an emphasis on nanomaterials,functional polymers,and state-of-the-art fabrication techniques in order to take advantage of their synergistic effects.Some of the methods that have so far exhibited promising potentials in fabricating these materials include the sol-gel method,layer-by-layer assembly,and plasma treatments.However,most of the fabricated products are still faced with significant challenges ranging from long-term stability to homogeneous adhesion of the coatings and their scalability for industrial applications.This review discusses the recent progress and the relationship between corrosion inhibition and self-healing efficiencies of wear resistant polymer nanocomposite coatings.Some challenges related to optimizing coating performance were also discussed.In addition,future directions ranging from the consideration of bioinspired designs,novel hybrid nanocomposite materials,and environmentally sustainable solutions integrated with smart protective coatings were also proposed as new wave technologies that can potentially revolutionize the corrosion protection offered by Mg alloys while opening up prospects for improved performance and sustainability.
文摘This study investigates the mechanism of action of representative molecules of basalt fibers on the healing of water-soaked asphalt.Thermodynamic parameters,morphological characteristics,interfacial healing energy,and interfacial healing strength were analyzed using molecular dynamics and macroscopic tests under different time,temperature,and water conditions to evaluate the specific states and critical conditions involved in self-healing.The results indicate that basalt-fiber molecules can induce rearrangement and a combination of water-soaked asphalt at the healing interface.Hydroxyl groups with different bonding states increase the interfacial adsorption capacity of water-soaked asphalt.The interaction between basalt fiber molecules and water molecules leads to a"hoop"phenomenon,while aromatics-2 molecules exhibit a"ring band aggregation"phenomenon.The former reduces the miscibility of water and asphalt molecules,while the latter causes slow diffusion of the components.Furthermore,a micro-macro dual-scale comparison of interfacial healing strength was conducted at temperatures of 297.15 and 312.15 K to identify the strength transition point and critical temperature of 299.4 K during the self-healing process of basalt-fiber modified water-soaked asphalt.
基金supported by the National Natural Science Foundation of China(Nos.22006057 and 21906072)the China Postdoctoral Science Foundation(No.2023M743178)+2 种基金the Jiangsu Province Industry-University-Research Cooperation Project(No.BY20231482)the Open Fund of the Key Laboratory of Solar Cell electrode Materials in China Petroleum,Chemical Industry(No.2024A093)the Key Laboratory of Functional Inorganic Mate-rial Chemistry(Heilongjiang University),Ministry of Education and Postgraduate Research&Practice Innovation Program of Jiangsu Province(China)(No.SJCX24_2481).
文摘Coatings of marine equipment inevitably suffer from physical or chemical damage in service,together with biofouling from microbial attachment,leading to a shorter service life of them.Herein,a multi-functional corrosion-resistant coating with efficient photothermal self-healing and anti-biofouling per-formance was designed by using CuO/g-C_(3)N_(4)(CuO/CN)S-scheme heterojunction filler in combination with polydimethylsiloxane(PDMS)as the coating matrix for achieving the effective protection of Q235 steel.The results of the electrochemical impedance spectroscopy(EIS)experiments indicate that the CuO/CN/PDMS composite coatings possessed excellent corrosion resistance,in which the impedance ra-dius of optimal CuO/CN-1/PDMS composite coating could still remain 3.49×10^(9)Ωcm^(2)after 60 d of immersion in seawater under sunlight irradiation.Meanwhile,the as-prepared CuO/CN/PDMS compos-ite coating not only can be rapidly heated up under the Xenon lamp illumination to achieve complete self-repair of scratches within 45 min,but also exhibited excellent antimicrobial effects in the antifouling experiments.This study opens a new avenue for the development of g-C_(3)N_(4)-based multifunctional coat-ings and provides guidance for the development of the next generation of intelligent protective coatings.
基金supported by the National Key Research and Development Program of China(No.2021YFC2400703)the Key Scientific and Technological Research Projects in Henan Province(Nos.232102311155 and 232102230106)Zhengzhou University Major Project Cultivation Special Project(No.125-32214076).
文摘Drug-eluting magnesium(Mg)alloy stents have a slower degradation rate and lower restenosis rate compared with uncoated stents,demonstrating good clinical efficacy.However,the release of anti-hyperplasia drugs from coatings delays endothelial tissue repair,thus leading to late stent thrombosis.To address these issues,a dual self-healed coating with various biological properties was fabricated on magnesium fluoride/polydopamine(MgF_(2)/PDA)-treated Mg alloys by spraying-assisted layer-by-layer(LBL)self-assembly of chitosan(CS),gallic acid(GA),and 3-aminobenzeneboronic acid-modified hyaluronic acid(HA-ABBA).The LBL coating,approximately 1.50μm thick,exhibited a uniform morphology with good adhesion strength(~1065 mN).The annual corrosion rate(Pi)of LBL samples was~1400 times slower than that of the Mg substrate,due to the physical barrier function provided by MgF_(2)/PDA layers and the dual self-healed ability of LBL layers.The rapid self-healing ability(with a healing period of~4 h under dynamic/static conditions)resulted from the synergistic interplay between the recombination of diverse chemical bonds within the LBL coating and the coordination of LBL-released GA with Mg2+,as corroborated by computer simulations.Compared with the drug-eluting coatings,the LBL sample demonstrated substantial advantages in anti-oxidation,anti-denaturation of fibrinogen,anti-platelet adhesion,anti-inflammation,anti-hyperplasia,and promoted-endothelialization.These benefits effectively address the limitations associated with drug-eluting coatings.
基金supported by Gansu Provincial Science and Technology Plan(23CXGA0195)Longnan Science and Technology Plan(2024CX03)。
文摘Graphene oxide nanomaterials are increasingly used in various fields due to their superior properties.In order to study the influence of graphene oxide additives on the performance of modified asphalt,in this study,graphene oxide modified asphalt was prepared and characteristics was studied including the high deformation resistance performance and the self-healing property of modified asphalt.Functional groups and morphology of graphene oxide modified asphalt were described by Fourier transform infrared spectroscopy.The high deformation resistance performance and self-healing effect of asphalt samples were obtained through dynamic slear rheometer(DSR)test.Results shows that graphene oxide dispersions improve the performance of asphalt relatively well compared to graphene oxide powder.There is no chemical reaction between graphene oxide and asphalt,but physical connection.The addition of graphene oxide improved the high deformation resistance of modified asphalt and expedited the self-healing ability of asphalt under fatigue load.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.5173162 and 21204071).
文摘Conventional hydrogels exhibit good performance in various biomedical applications.They consist of a three-dimensional network with porous structures that are constructed from synthetic or natural polymers through physical or chemical crosslinking.However,a critical challenge lies in their vulnerability to mechanical damage,as conventional hydrogels often fail to maintain structural integrity under minor trauma.In response to this issue,self-healing hydrogels can autonomously repair themselves after damage,restoring their original functionality without needing external intervention.This remarkable capability significantly extends the lifespan of critical products,including wound dressings,biosensors,drug delivery and tissue engineering scaffolds.This review summarizes the synthesis mechanisms while emphasizing the latest application research advancements.By highlighting the distinct benefits of self-healing hydrogels,we systematically review recent progress in synthesis methods.Our goal is to provide valuable insights that will help researchers in designing and developing more efficient self-healing hydrogels,paving the way for enhanced biomedical solutions.
基金Funded by the National Science and Technology Major Project(No.J2019-VII-0015-0155)the National Natural Science Foundation of China(No.51705533)。
文摘A two-step approach was employed to create a composite coating consisting of TiO_(2)nanoparticles and extremely elastic polydimethylsiloxane(PDMS).The TiO_(2)-PDMS composite coating demonstrates exceptional superhydrophobicity and antifouling efficacy,as evidenced by the static contact angle,contact angle hysteresis,and antifouling tests.The electron microscopic analysis reveals that the composite coating consists of TiO_(2)particles and agglomerates,which forms a dual-level roughness structure at the nanometer and micron scales.This unique structure promotes the Cassie-Baxter state of the coating when in contact with the liquid,resulting in an increased static contact angle and a reduced contact angle hysteresis.The PDMS primer facilitates the attachment of TiO_(2)particles,resulting in a composite coating with excellent scratch-resistant characteristics.Additionally,the PDMS primer possesses the capacity to retain low surface energy modifiers.Simultaneously,the PDMS primer serves as a reservoir for a low surface energy modifier,enhancing the self-repairing properties of the TiO_(2)-PDMS composite coating.This composite coating exhibits effective self-cleaning capabilities against many forms of contaminants,including liquids,solids,and slurries.
基金Funded by the International Science and Technology Cooperation Project of the Key R&D Program of Science and Technology Innovation Yongjiang 2035。
文摘An evaluation method for self-healing capacity was designed,which includes the control of initial cracks and subsequent permeability testing.This method was employed to evaluate the self-healing behavior of mortars incorporating crystalline admixtures(CAs)under various conditions,including water immersion,limewater soaking,and wet-dry cycles,with varying CA dosages and crack widths.The experimental results indicate that cement possesses inherently self-healing capability.Limewater environments inhibits healing compared with water immersion;however,wet-dry cycles enhance the effectiveness of higher CA dosages.Increasing the CA content can not improve healing performance,and wide cracks(0.3 mm)substantially reduce the intrinsic self-healing potential of cement.
基金supported by the National Natural Science Foundation of China(Nos.52273023,51973103,and 21774069).
文摘Integrated conductive elastomers with excellent mechanical performance,stable high conductivity,self-healing capabilities,and high transparency are critical for advancing wearable devices.Nevertheless,achieving an optimal balance among these properties remains a significant challenge.Herein,through in situ free-radical copolymerization of 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate(TEEA)and vinylimidazole(VI)in the presence of polyethylene glycol(PEG;Mn=400),tough P(TEEA-co-VI)/PEG elastomers with multiple functionalities were prepared,in which P(TEEA-co-VI)was dynamically cross-linked by imidazole-Zn^(2+)metal coordination crosslinks,and physically blended with PEG as polymer electrolyte to form a homogeneous mixture.Notably,Zn^(2+)has a negligible impact on the polymerization process,allowing for the in situ formation of numerous imidazole-Zn^(2+)metal coordination crosslinks,which can effectively dissipate energy upon stretching to largely reinforce the elastomers.The obtained P(TEEA-co-VI)/PEG elastomers exhibited a high toughness of 10.0 MJ·m^(-3) with a high tensile strength of 3.3 MPa and a large elongation at break of 645%,along with outstanding self-healing capabilities due to the dynamic coordination crosslinks.Moreover,because of the miscibility of PEG with PTEEA copolymer matrix,and Li+can form weak coordination interactions with the ethoxy(EO)units in PEG and PTEEA,acting as a bridge to integrate PEG into the elastomer network.The resulted P(TEEA-co-VI)/PEG elastomers showed high transparency(92%)and stable high conductivity of 1.09×10_(-4) S·cm^(-1).In summary,the obtained elastomers exhibited a well-balanced combination of high toughness,high ionic conductivity,excellent self-healing capabilities,and high transparency,making them promising for applications in flexible strain sensors.
文摘Smart materials with self-healing properties are highly desired.This study investigates graphene-incorporated styrene-isoprene-styrene(SIS)nanocomposites for their self-healing property assisted by Infrared(IR)and microwave radiation.The good thermal conductivity and energy-absorbing capacity of graphene offer self-healing capability to SIS/GnP nanocomposites due to their exposure to IR and microwave radiation.The absorbed energy in graphene is transferred to the SIS matrix,facilitating the diffusion,re-entanglement,and restoration of the SIS polymer chains,resulting in multiple times self-healing capabilities using various external stimuli.All SIS/GnP nanocomposite samples exhibit self-healing behavior,and the healing efficiency rises with increasing GnP content in the nanocomposites and healing time.The cut mark on the SIS/GnP nanocomposite sample(having 10 wt.%of GnP)entirely disappears when the sample is placed in contact with IR radiation(at 250 W)for 10 min.In addition,the sample is completely healed when exposed to microwave radiation(at 900 W)for less than 30 s.The good dispersion of the graphene nanoplates in the SIS matrix was observed in SEM micrographs.Strong interfacial interactions between the SIS copolymer chains and exfoliated graphene(GnP)due toπ-πstacking stabilize graphene dispersion against agglomeration.The effect of graphene nanoplates on the SIS thermoplastic elastomer’s thermal stability and phase transition is also studied by Thermo-gravimetric analysis(TGA)and Differential Scanning Calorimetry(DSC)analysis.
基金supported by the National Natural Science Foundation of China(Nos.U21A6004,U21A20172,61804091,21574076,and U1510121)the Science and Technology Major Project of Shanxi(No.202101030201022)+1 种基金the Fundamental Research Program of Shanxi Province(No.202103021223019)the Open Fund of the Key Lab of Organic Optoelectronics&Molecular Engineering.
文摘Soft self-healing materials are promising candidates for flexible electronic devices due to their excep-tional compatibility,extensibility,and self-restorability.Generally,these materials suffer from low tensile strength and susceptibility to fracture because of the restricted microstructure design.Herein,we pro-pose a hydrothermal-freeze-thaw method to construct high-strength self-healing hydrogels with even in-terconnected networks and distinctive wrinkled surfaces.The integration of the wrinkled outer surface with the three-dimensional internal network confers the self-healing hydrogel with enhanced mechan-ical strength.This hydrogel achieves a tensile strength of 223 kPa,a breaking elongation of 442%,an adhesion strength of 57.6 kPa,and an adhesion energy of 237.2 J m-2.Meanwhile,the hydrogel demon-strates impressive self-repair capability(repair efficiency:93%).Moreover,the density functional theory(DFT)calculations are used to substantiate the stable existence of hydrogen bonding between the PPPBG hydrogel and water molecules which ensures the durability of the PPPBG hydrogel for long-term applica-tion.The measurements demonstrate that this multifunctional hydrogel possesses the requisite sensitivity and durability to serve as a strain sensor,which monitors a spectrum of motion signals including subtle vocalizations,pronounced facial expressions,and limb articulations.This work presents a viable strategy for healthcare monitoring,soft robotics,and interactive electronic skins.
基金supported by the National Natural Science Foundation of China(Nos.T2222019 and T2225016)the National Key R&D Program of China(No.2024YFA0919300)the Fundamental Research Funds for the Central Universities(Nos.020414380232 and 021414380534).
文摘Supramolecular materials that combine toughness,transparency,self-healing,and environmental stability are crucial for advanced applications,such as flexible electronics,wearable devices,and protective coatings.However,integrating these properties into a single system remains challenging because of the inherent trade-offs between the mechanical strength,elasticity,and structural reconfigurability.Herein,we report a supramolecular ionogel designed via a simple one-step polymerization strategy that combines hydrogen bonding and ion-dipole interactions in a physically crosslinked network.This dual-interaction architecture enables the ionogel to achieve high tensile strength(9 MPa),remarkable fracture toughness(23.6 MJ·m^(−3)),and rapid self-healing under mild thermal stimulation.The material remains highly transparent and demonstrates excellent resistance to moisture,acid,and salt environments,with minimal swelling and performance degradation.Furthermore,it effectively dissipates over 80 MJ·m^(−3) of energy during high-speed impacts,providing reliable protection to fragile substrates.This study offers a broadly applicable molecular design framework for resilient and adaptive soft materials.
基金Funded by the National Natural Science Foundation of China(No.52278446)。
文摘This study aims to investigate the intrinsic repair behavior of asphalt using molecular dynamics simulation.The Materials Studio software was employed to construct a virgin asphalt and SBS modified asphalt.The evaluation of the two types of asphalt included diffusion coefficient,activation energy of diffusion,and pre-exponential factor.The self-healing performance of both virgin asphalt and SBS modified asphalt was then analyzed and verified through fatigue shear-healing tests.The molecular dynamics results indicate that the self-healing properties of both asphalts improve with increasing temperature.The time required for the cracked area to be filled was found to be shorter than the time needed for the asphalt material to recover its mechanical properties.Furthermore,the activation energy of diffusion for SBS modified asphalt was slightly higher compared to that of virgin asphalt,as observed in the experimental results.The self-healing speed and collision frequency of SBS modified asphalt were both faster than those of virgin asphalt,indicating that the self-healing performance of SBS modified asphalt is superior overall.
基金financially supported by the National Natural Science Foundation of China(No.U21A2046)the Western Light Project of CAS(No.xbzg-zdsys-202118)+1 种基金the Shaanxi Provincial Science and Technology Innovation Team(No.2024RS-CXTD-63)the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(No.2023-TS-03).
文摘The potential of organic coatings in antifouling applications has been well-documented.Beyond their exceptional antifouling effects,these coatings should also possess good mechanical strength and self-healing capabilities.Herein,a novel vinyl-based ionic liquid[VEMIM^(+)][Cl^(−)](IL)was in situ polymerized and then assembled onto the surface of liquid metal(GLM)nanodroplets to prepare GLM-IL.Subsequently,Ti_(3)C_(2)Tx(MXene)was modified with GLM-IL nanodroplets to obtain GLM-IL/MXene composite,which acts as an efficient photon captor and photothermal converters and can be further composited with PU film(GLM-IL/MXene/PU).Notably,the composite film significantly increases by∼117℃after exposure to 200 mW/cm2 light irradiation.This increase is attributed to the high photothermal conversion efficiency of MXene and the excellent plasma effect of GLM-IL.Compared with pure PU,the GLM-IL/MXene/PU film shows a 50%improvement in tensile strength and above 85.8%healing efficiency with a local temperature increase.Additionally,the as-prepared GLM-IL/MXene/PU film reveals satisfactory antifouling properties,achieving a 99.7%reduction in bacterial presence and an 80.3%reduction in microalgae.This work introduces a novel coating with antifouling and self-healing properties,offering a wide range of applications in the fields of marine antifouling and biomedicine.
基金support given by the Fundamental Research Program of Shanxi Province(Grant No.202203021212152)。
文摘The self-healing function is considered one of the effective ways to address structural damage and improve interfacial bonding in Energetic composite materials(ECMs).However,the currently prepared ECMs with self-healing function have problems such as irregular particle shape and uneven distribution of components,which affect the efficient play of self-healing function.In this paper,HMX-based energetic microspheres with self-healing function were successfully prepared by microchannel technology,which showed excellent self-healing effect in both Polymer-bonded explosives(PBXs)and Composite solid propellants(CSPs).The experimental results show that the HMX-based energetic microspheres with different binder contents prepared by microchannel technology show regular shape,HMX crystal particles are uniformly wrapped by self-healing binder(GAPU).When the content of GAPU in HMX-based energetic microspheres is 10%,PBXs show excellent self-healing effect and mechanical safety is improved by 400%(raw HMX vs S4,5 J vs 25 J).As a high-energy component,the burning rate of CSPs is increased by 359.4%,the time(burning temperature>1700℃)is prolonged by 333.3%,and the maximum impulse force is increased by 107.3%(CSP-H vs CSP-S4,0.84 mm/s vs 3.87 mm/s,0.06 s vs 0.26 s,0.82 m N vs 1.70 m N).It also has excellent storage performance.The preparation of HMX-based energetic microspheres with self-healing function by microchannel technology provides a new strategy to improve the storage performance of ECMs and the combustion performance of CSPs.
基金supported by CAPES scholarship-Brazil Coordination for the Improvement of Higher Education Personnel(No.88887.507764/2020-00)]by CNPq-Brazil National Council of Technological and Scientific Development(No.308564/2023-5).
文摘The self-healing properties of dual-component epoxy microcapsules are evaluated when incorporated into an epoxy coating.The performance of the coating was assessed under immersion in a saline solution,simulating seawater conditions.Initially,synthesized microcapsules are incorporated into the epoxy coating.Then,the self-healing capabilities of the coating are studied under immersion using scanning vibrating electrode technique(SVET),open circuit potential(OCP),electrochemical impedance spectroscopy(EIS)and immersion corrosion test on coated samples with intentionally created artificial defects.The last three tests were conducted in a 3.5%NaCl solution.The adhesion of the coating is also studied by pull-off adhesion test.SVET analyses reveal lower ionic current densities in coated samples containing microcapsules during 24 h of immersion.EIS results demonstrate self-healing at the defect site for up to 12 h of immersion.After this time,the corrosion protection diminishes with prolonged immersion in the saline solution.Despite this,the coating with the microcapsules exhibits decrease in the corrosion process compared to the coating without the microcapsules.These results are consistent and complement the outcomes of the immersion tests conducted over 360 and 1056 h,which indicate that coated samples without microcapsules exhibit double the corroded areas around the scribes compared to coated samples containing the microcapsules.These findings offer a promising outlook for applying this coating on offshore carbon steel structures under immersion aiming for a longer lifetime with less maintenance intervention.
文摘The construction industry faces significant challenges due to the inherent brittleness and cracking tendency of traditional concrete,which compromises structural durability and necessitates frequent,costly repairs.This paper explores the groundbreaking development of self-healing concrete as a transformative material technology for sustainable architecture.We examine three primary autogenous healing mechanisms:encapsulated polymer/microbial healing agents,vascular networks,and shape memory alloys.Through a review of recent laboratory experiments and pilot projects,this study analyzes the crack-sealing efficiency,recovery of mechanical properties,and long-term durability of these materials.A comparative case study of a demonstration building facade incorporating microbial self-healing concrete is presented,showing a potential 30%reduction in maintenance costs over a 20-year lifecycle.The findings indicate that self-healing concrete not only enhances structural resilience but also significantly reduces the carbon footprint associated with building maintenance,aligning with the core principles of sustainable development.The paper concludes by discussing current limitations in mass production and cost-effectiveness and proposes directions for future research to facilitate widespread adoption in architectural engineering.
基金supported by the National Natural Science Foundation of China(Grant No.22479130)Natural Science Foundation of Henan(Grant No.252300421170)China Postdoctoral Science Foundation(Grant No.2023M743150).
文摘With the exponential growth of portable electronic devices and wearable technologies,batteries are currently required to deliver not only high energy density and extended cycling performance but also enhanced safety and exceptional durability.Inspired by the self-repair mechanism observed in natural systems,a self-healing strategy shows great application potential in enabling batteries to resist external physical and chemical damage.In this review,we provide a detailed exploration of the application of self-healing materials in battery components,including electrodes,electrolytes,and encapsulation layers.We also analyze the advantages and limitations of various self-healing mechanisms,highlighting their roles in optimizing battery performance.By presenting a comprehensive synthesis of existing research,the potential pathways for advancing the development of self-healing batteries are identified,as well as the key challenges and opportunities within this field.This review aims to promote the practical integration of self-healing batteries in smart and flexible electronic devices,paving the way for safer,more reliable,and long-lasting energy storage systems.
基金Financial support from the National Research Foundation of Korea grant funded by the Korean government(No.2022R1F1A1074210)the University Natural Science Research Projects of Anhui Province(No.2024AH050145)is gratefully acknowledged.
文摘Electromagnetic interference shielding materials are inevitably damaged during service,causing a serious decline in their shielding performance.Therefore,it is urgent to develop polymer-based composites with excellent electromagnetic shielding and self-healing properties.In this study,a layered foam/film structure polycaprolactone composite characterized by electric/magnetic bifunctionality was constructed by a hot-pressing process and supercritical carbon dioxide foaming.The microcellular framework offers rich heterogeneous interfaces and improves electromagnetic attenuation capabilities.Such a reasonable construction of asymmetric shielding networks optimizes the impedance matching,while the incident electromagnetic waves form a special attenuation mode of“absorption-reflection-reabsorption”.The polycaprolactone composite foam exhibits an excellent electromagnetic interference shielding effectiveness of 53.6 dB in the X-band and a low reflection value of only 0.36,effectively reducing secondary pollution.In addition,the damaged polycaprolactone composite foam exhibits over 93%electromagnetic interference shielding effectiveness and healing efficiency,ensuring the long-term stability of the material in practical applications.