期刊文献+
共找到61篇文章
< 1 2 4 >
每页显示 20 50 100
Emerging trends and perspectives for biomedical engineering
1
作者 Hong-Hao Hou 《Biomedical Engineering Communications》 2025年第1期1-2,共2页
Welcome to the 4th volume of Biomedical Engineering Communications the first issue of 2025!Biomedical engineering is a rapidly evolving field that combines engineering principles with medical and biological sciences t... Welcome to the 4th volume of Biomedical Engineering Communications the first issue of 2025!Biomedical engineering is a rapidly evolving field that combines engineering principles with medical and biological sciences to create innovative healthcare technologies.Biomedical engineering brings an interdisciplinary,problem-solving approach to bioengineering,biology and medicine.This interdisciplinary field is essential for developing advanced medical devices,diagnostic tools,and therapeutic solutions that enhance patient care and improve health outcomes.It allows them to develop technologies and systems that directly contribute to diagnosing,treating and preventing diseases. 展开更多
关键词 combines engineering principles biomedical engineering emerging trends advanced medical devicesdiagnostic healthcare technologies interdisciplinary approach medical biological sciences BIOengineering
暂未订购
Ophthalmological instruments of Al-Halabi fill in a gap in the biomedical engineering history
2
作者 Mohamed N Saad 《World Journal of Methodology》 2022年第1期1-19,共19页
Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect ... Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect his willingness toteach. Moreover, he included in his book a magnificent illustration of theanatomical structure of the eye. The book reflects Al-Halabi’s medical practice andteaching and shows several advanced medical techniques and tools. Hisinvaluable comments reflect his deep experimental observations in the field ofophthalmology. The current article provides proof that Al-Halabi is one of ourearly biomedical engineers from more than 800 years ago. Al-Halabi represents aring in the chain of biomedical engineering history. His surgical instrumentsrepresent the biomechanics field. Al-Halabi should be acknowledged among thebiomedical engineering students for his various contributions in the field ofsurgical instruments. 展开更多
关键词 Al-Halabi biomedical engineering education biomedical engineering history Ophthalmological instruments
在线阅读 下载PDF
A Review of Nano/Micro/Milli Needles Fabrications for Biomedical Engineering 被引量:1
3
作者 Bin Liu Xin Yi +6 位作者 Ying Zheng Zhishan Yuan Jingbo Yang Jian Yang Xiao Yu Lelun Jiang Chengyong Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期51-79,共29页
Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating h... Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating highly localized stress with their sharp tips to achieve bioliquid sampling,biosensing,drug delivery,surgery,and other such applications.In this review,we provide an overview of multiscale needle fabrication techniques and their biomedical applications.Needles are classified as nanoneedles,microneedles and millineedles based on the needle diameter,and their fabrication techniques are highlighted.Nanoneedles bridge the inside and outside of cells,achieving intracellular electrical recording,biochemical sensing,and drug delivery.Microneedles penetrate the stratum corneum layer to detect biomarkers/bioelectricity in interstitial fluid and deliver drugs through the skin into the human circulatory system.Millineedles,including puncture,syringe,acupuncture and suture needles,are presented.Finally,conclusions and future perspectives for next-generation nano/micro/milli needles are discussed. 展开更多
关键词 NANONEEDLES MICRONEEDLES Millineedles Fabrication methods biomedical engineering
在线阅读 下载PDF
Exploring Diamond Nanoneedle Arrays:Fabrication and Emerging Applications in Biomedical Engineering
4
作者 Yang Yang Zixun Wang +1 位作者 Peng Shi Wenjun Zhang 《Accounts of Materials Research》 2024年第3期259-270,共12页
CONSPECTUS:Diamond nanomaterials have attracted significant interest in recent years due to their unique physical and chemical properties.Their exceptional mechanical strength,chemical stability,biocompatibility,and h... CONSPECTUS:Diamond nanomaterials have attracted significant interest in recent years due to their unique physical and chemical properties.Their exceptional mechanical strength,chemical stability,biocompatibility,and high thermal conductivity make them ideal candidates for a wide range of biomedical applications.Various formats,including nanodiamonds,diamond nanofilms,and diamond nanoneedle arrays(DNNAs),have been fabricated and used,exhibiting remarkable stability and low cytotoxicity.In particular,high-aspect-ratio and highdensity DNNAs demonstrate promising potential for live cell manipulation and analysis because of their unique combination of mechanical robustness,chemical stability,and wellforged bio−nanointerfaces.On the other hand,the chemical stability of diamond material makes fabrication and functionalization challenging,which could be improved for their wider adoption. 展开更多
关键词 mechanical strength chemical stability BIOCOMPATIBILITY FABRICATION biomedical engineering nanodiamondsdiamond nanofilmsand diamond nanoneedle arrays dnnas NANOMATERIALS
原文传递
Progress in biomedical engineering during 2023 in China
5
作者 Zhikai Yu Zi-ang Song +3 位作者 Hang Xu Jingjing Wang Changming Wang Guoguang Zhao 《EngMedicine》 2024年第3期60-68,共9页
Objective:To investigate the advancements achieved by biomedical engineering laboratories in China during 2023.Methods:A total of 729 articles were initially selected from the SCI database and categorized by image,sig... Objective:To investigate the advancements achieved by biomedical engineering laboratories in China during 2023.Methods:A total of 729 articles were initially selected from the SCI database and categorized by image,signal,gene,and mechanics,with categories of quartile 1 or higher.Subsequently,52 representative articles were selected for this review.Results:The Chinese research team made significant strides in biomedical engineering in 2023,primarily in the following areas:traditional imaging technology,fluorescence labeling technology,photoacoustic imaging technology,neural interfaces and modulation,medical machinery,and medical materials.Significance:This review serves as an instructional manual for novices and an updated status report for experienced professionals.Additionally,comparing the achievements of Chinese teams with international teams may help shape future research directions in China. 展开更多
关键词 biomedical engineering Instrument science Information science Materials science
在线阅读 下载PDF
X for medicine:exploration and innovation in biomedical engineering 被引量:2
6
作者 Song Li Lisa X.Xu 《Med-X》 2023年第1期214-215,共2页
We are thrilled to launch Med-X,a new international and high-quality open-access journal that publishes groundbreaking papers across the areas of biomedical engineering for the purpose of transforming modern medicine.... We are thrilled to launch Med-X,a new international and high-quality open-access journal that publishes groundbreaking papers across the areas of biomedical engineering for the purpose of transforming modern medicine.Biomedical engineering applies principles of engineering to develop solutions for various health-related issues.It is the fastest-growing engineering discipline with unlimited potential and opportunities.Our journal aims to provide an interdisciplinary platform for communicating the latest important discoveries and innovations in basic and applied biomedical science and technology.We will accomplish this goal by publishing state-of-the-art research articles,rapid communications,case reports,reviews,perspectives,and commentaries. 展开更多
关键词 innovation groundbreaking papers open access journal EXPLORATION transforming modern medicinebiomedical engineering biomedical engineering principles engineering MEDICINE
在线阅读 下载PDF
Engineering organoid microfluidic system for biomedical and health engineering:A review 被引量:5
7
作者 Yifan Xing Junyu Liu +9 位作者 Xiaojie Guo Haipeng Liu Wen Zeng Yi Wang Chong Zhang Yuan Lu Dong He Shaohua Ma Yonghong He Xin-Hui Xing 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期244-254,共11页
In recent years,organoid technology,i.e.,in vitro three-dimensional(3D)tissue culture,has attracted increasing attention in biomedical engineering.Organoids are cell complexes induced by differentiation of stem cells ... In recent years,organoid technology,i.e.,in vitro three-dimensional(3D)tissue culture,has attracted increasing attention in biomedical engineering.Organoids are cell complexes induced by differentiation of stem cells or organ-progenitor cells in vitro using 3D culture technology.They can replicate the key structural and functional characteristics of the target organs in vivo.With the opening up of this new field of health engineering,there is a need for engineering-system approaches to the production,control,and quantitative analysis of organoids and their microenvironment.Traditional organoid technology has limitations,including lack of physical and chemical microenvironment control,high heterogeneity,complex manual operation,imperfect nutritional supply system,and lack of feasible online analytical technology for the organoids.The introduction of microfluidic chip technology into organoids has overcome many of these limitations and greatly expanded the scope of applications.Engineering organoid microfluidic system has become an interdisciplinary field in biomedical and health engineering.In this review,we summarize the development and culture system of organoids,discuss how microfluidic technology has been used to solve the main technical challenges in organoid research and development,and point out new opportunities and prospects for applications of organoid microfluidic system in drug development and screening,food safety,precision medicine,and other biomedical and health engineering fields. 展开更多
关键词 ORGANOIDS Stem cell Culture system MICROFLUIDICS biomedical engineering Human health
暂未订购
Applications of nanogenerators for biomedical engineering and healthcare systems 被引量:3
8
作者 Wanli Wang Jinbo Pang +17 位作者 Jie Su Fujiang Li Qiang Li Xiaoxiong Wang Jingang Wang Bergoi Ibarlucea Xiaoyan Liu Yufen Li Weijia Zhou Kai Wang Qingfang Han Lei Liu Ruohan Zang Mark HRümmeli Yang Li Hong Liu Han Hu Gianaurelio Cuniberti 《InfoMat》 SCIE CAS 2022年第2期53-109,共57页
The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment.However,conventional biomedical and healthcare devices have shortcomings such as short service life... The dream of human beings for long living has stimulated the rapid development of biomedical and healthcare equipment.However,conventional biomedical and healthcare devices have shortcomings such as short service life,large equipment size,and high potential safety hazards.Indeed,the power supply for conventional implantable device remains predominantly batteries.The emerging nanogenerators,which harvest micro/nanomechanical energy and thermal energy from human beings and convert into electrical energy,provide an ideal solution for self-powering of biomedical devices.The combination of nanogenerators and biomedicine has been accelerating the development of self-powered biomedical equipment.This article first introduces the operating principle of nanogenerators and then reviews the progress of nanogenerators in biomedical applications,including power supply,smart sensing,and effective treatment.Besides,the microbial disinfection and biodegradation performances of nanogenerators have been updated.Next,the protection devices have been discussed such as face mask with air filtering function together with real-time monitoring of human health from the respiration and heat emission.Besides,the nanogenerator devices have been categorized by the types of mechanical energy from human beings,such as the body movement,tissue and organ activities,energy from chemical reactions,and gravitational potential energy.Eventually,the challenges and future opportunities in the applications of nanogenerators are delivered in the conclusive remarks. 展开更多
关键词 biomedical engineering healthcare implantable devices NANOGENERATORS self-powered devices SENSORS
原文传递
Treatment of chronic heart failure in the 21st century:A new era of biomedical engineering has come 被引量:3
9
作者 Chun-Song Hu Qing-Hua Wu +1 位作者 Da-Yi Hu Tengiz Tkebuchava 《Chronic Diseases and Translational Medicine》 CSCD 2019年第2期75-88,共14页
Chronic heart failure(CHF)is a challenging burden on public health.Therapeutic strategies for CHF have developed rapidly in the past decades from conventional medical therapy,which mainly includes administration of an... Chronic heart failure(CHF)is a challenging burden on public health.Therapeutic strategies for CHF have developed rapidly in the past decades from conventional medical therapy,which mainly includes administration of angiotensin-converting enzyme inhibitors,angiotensin receptor blockers,beta-blockers,and aldosterone antagonists,to biomedical engineering methods,which include interventional engineering,such as percutaneous balloon mitral valvotomy,percutaneous coronary intervention,catheter ablation,biventricular pacing or cardiac resynchronization therapy(CRT)and CRT-defibrillator use,and implantable cardioverter defibrillator use;mechanical engineering,such as left ventricular assistant device use,internal artery balloon counteq^ulsation,cardiac support device use,and total artificial heart implantation;surgical engineering,such as coronary artery bypass graft,valve replacement or repair of rheumatic or congenital heart diseases,and heart transplantation(HT);regenerate engineering,which includes gene therapy,stem cell transplantation,and tissue engineering;and rehabilitating engineering,which includes exercise training,low-salt diet,nursing,psychological interventions,health education,and external counterpulsation/enhanced external counterpulsation in the outpatient department.These biomedical engineering therapies have greatly improved the symptoms of CHF and life expectancy.To date,pharmacotherapy,which is based on evidence-based medicine,large-scale,multi-center,randomized controlled clinical trials,is still a major treatment option for CHF;the current interventional and mechanical device engineering treatment for advanced CHF is not enough owing to its individual status.In place of HT or the use of a total artificial heart,stem cell technology and gene therapy in regenerate engineering for CHF are very promising.However,each therapy has its advantages and disadvantages,and it is currently possible to select better therapeutic strategies for patients with CHF according to cost-efficacy analyses of these therapies.Taken together,we think that a new era of biomedical engineering for CHF has begun. 展开更多
关键词 Chronic heart failure biomedical engineering TREATMENT
原文传递
Plasma-activated interfaces for biomedical engineering 被引量:2
10
作者 Pei Liu Guomin Wang +2 位作者 Qingdong Ruan Kaiwei Tang Paul K.Chu 《Bioactive Materials》 SCIE 2021年第7期2134-2143,共10页
As an important phenomenon to monitor disease development,cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials.Therefore,finding a strategy to bu... As an important phenomenon to monitor disease development,cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials.Therefore,finding a strategy to build the specific biomedical interfaces will help regulate information transmission and produce better therapeutic results to benefit patients.In the past decades,plasmas containing energetic and active species have been employed to construct various interfaces to meet biomedical demands such as bacteria inactivation,tissue regeneration,cancer therapy,and so on.Based on the potent functions of plasma modified surfaces,this mini-review is aimed to summarize the state-of-art plasma-activated interfaces and provide guidance to researchers to select the proper plasma and processing conditions to design and prepare interfaces with the optimal biological and related functions.After a brief introduction,plasma-activated interfaces are described and categorized according to different criteria including direct plasma-cells interfaces and indirect plasma-material-cells interfaces and recent research activities on the application of plasma-activated interfaces are described.The authors hope that this mini-review will spur interdisciplinary research efforts in this important area and expedite associated clinical applications. 展开更多
关键词 Plasma-assisted processes Bioactive interfaces biomedical engineering
原文传递
Vascularized organoid-on-a-chip for centimeter-scale organoid cultivation 被引量:1
11
作者 Xiaofeng Gong Chen Yang +5 位作者 Jianchen Peng Xiao Ding Hui Yang Aaron Gerald Wang Emmanuel Enoch Dzakah Bing Zhao 《Bio-Design and Manufacturing》 2025年第3期410-422,I0023-I0027,共18页
An organoid is a three-dimensional(3D)cell culture model that can reproduce the distinct structure and inherent functionality of certain organs.Nevertheless,a major limitation of organoids is the absence of a complex ... An organoid is a three-dimensional(3D)cell culture model that can reproduce the distinct structure and inherent functionality of certain organs.Nevertheless,a major limitation of organoids is the absence of a complex vascular network,thus restricting the supply of oxygen and essential nutrients.Coupled with their inherent size constraints and metabolite accumulation,it is challenging for organoids to replicate the natural intricacies of organs,thereby limiting their applicability.To overcome the challenges associated with this technology,we developed a culture platform to cultivate tumors or organ-derived organoids up to the centimeter scale.Initially,a customized organoid-on-a-chip including a microvascular network at the micron scale was designed using 3D printing.Further,by integrating an infusion device,the chip ensures an adequate supply of nutrients and fluid immersion while mimicking blood flow dynamics.Our method overcomes the issue of the limited size of organoids due to insufficient nutrient access,making it possible to produce large-scale tumor and normal tissue models in vitro,while providing insights into drug efficacy and toxicology evaluation as well as standardized organoid production. 展开更多
关键词 Organoid Tumoroid BIOMATERIALS Organoid-on-a-chip biomedical engineering
暂未订购
Data-Driven Healthcare:The Role of Computational Methods in Medical Innovation
12
作者 Hariharasakthisudhan Ponnarengan Sivakumar Rajendran +2 位作者 Vikas Khalkar Gunapriya Devarajan Logesh Kamaraj 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期1-48,共48页
The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical r... The purpose of this review is to explore the intersection of computational engineering and biomedical science,highlighting the transformative potential this convergence holds for innovation in healthcare and medical research.The review covers key topics such as computational modelling,bioinformatics,machine learning in medical diagnostics,and the integration of wearable technology for real-time health monitoring.Major findings indicate that computational models have significantly enhanced the understanding of complex biological systems,while machine learning algorithms have improved the accuracy of disease prediction and diagnosis.The synergy between bioinformatics and computational techniques has led to breakthroughs in personalized medicine,enabling more precise treatment strategies.Additionally,the integration of wearable devices with advanced computational methods has opened new avenues for continuous health monitoring and early disease detection.The review emphasizes the need for interdisciplinary collaboration to further advance this field.Future research should focus on developing more robust and scalable computational models,enhancing data integration techniques,and addressing ethical considerations related to data privacy and security.By fostering innovation at the intersection of these disciplines,the potential to revolutionize healthcare delivery and outcomes becomes increasingly attainable. 展开更多
关键词 Computational models biomedical engineering BIOINFORMATICS machine learning wearable technology
在线阅读 下载PDF
Uniting an academic community via Bio-Design and Manufacturing
13
作者 Huayong Yang 《Bio-Design and Manufacturing》 2025年第5期705-708,共4页
As a follow-up to the successful International Conference on Biomaterials,Bio-Design and Manufacturing(BDMC)held at the National University of Singapore in 2023[1]and at the University of Tokyo in 2024[2],BDMC2025 too... As a follow-up to the successful International Conference on Biomaterials,Bio-Design and Manufacturing(BDMC)held at the National University of Singapore in 2023[1]and at the University of Tokyo in 2024[2],BDMC2025 took place at the University of Oxford in the UK from August 8th to August 10th this year.After the meeting,a participant from the University of Cambridge described his experience of attending BDMC2025 on the social media platform LinkedIn in the following terms:“Many thanks to the organizers for a fantastic event bringing together nearly everyone at the interface of Biofabrication,Materials Science,and Biomedical Engineering”[3].The conference was held on the campus of the University of Oxford and 190 researchers from 55 academic institutions across 10 countries and regions attended(Fig.1). 展开更多
关键词 bio design biomedical engineering MANUFACTURING BIOMATERIALS University Oxford social media platform linkedin BIOFABRICATION academic community
暂未订购
Design and Additive Manufacturing of Metamaterial-Enabling Structure-Driven Material Properties
14
作者 Ling Wang Bo Song 《Additive Manufacturing Frontiers》 2025年第1期1-2,共2页
Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative techn... Additive manufacturing(AM)technology has revolutionized engineering field by enabling the creation of intricate,high-performance structures that were once difficult or impossible to fabricate.This transformative technology has particularly advanced the development of metamaterials-engineered materials whose unique properties arise from their structure rather than composition-unlocking immense potential in fields ranging from aerospace to biomedical engineering. 展开更多
关键词 METAMATERIALS structure driven additive manufacturing biomedical engineering material properties metamaterials engineered materials engineering
在线阅读 下载PDF
MXene‑Graphene Composites:A Perspective on Biomedical Potentials 被引量:7
15
作者 Ebrahim Mostafavi Siavash Iravani 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期112-123,共12页
MXenes,transition metal carbides and nitrides with graphene-like structures,have received considerable attention since their first discovery.On the other hand,Graphene has been extensively used in biomedical and medic... MXenes,transition metal carbides and nitrides with graphene-like structures,have received considerable attention since their first discovery.On the other hand,Graphene has been extensively used in biomedical and medicinal applications.MXene and graphene,both as promising candidates of two-dimensional materials,have shown to possess high potential in future biomedical applications due to their unique physicochemical properties such as superior electrical conductivity,high biocompatibility,large surface area,optical and magnetic features,and extraordinary thermal and mechanical properties.These special structural,functional,and biological characteristics suggest that the hybrid/composite structure of MXene and graphene would be able to meet many unmet needs in different fields;particularly in medicine and biomedical engineering,where high-performance mechanical,electrical,thermal,magnetic,and optical requirements are necessary.However,the hybridization and surface functionalization should be further explored to obtain biocompatible composites/platforms with unique physicochemical properties,high stability,and multifunctionality.In addition,toxicological and long-term biosafety assessments and clinical translation evaluations should be given high priority in research.Although very limited studies have revealed the excellent potentials of MXene/graphene in biomedicine,the next steps should be toward the extensive research and detailed analysis in optimizing the properties and improving their functionality with a clinical and industrial outlook.Herein,different synthesis/fabrication methods and performances of MXene/graphene composites are discussed for potential biomedical applications.The potential toxicological effects of these composites on human cells and tissues are also covered,and future perspectives toward more successful translational applications are presented.The current state-of-the-art biotechnological advances in the use of MXene-Graphene composites,as well as their developmental challenges and future prospects are also deliberated.Due to the superior properties and multifunctionality of MXene-graphene composites,these hybrid structures can open up considerable new horizons in future of healthcare and medicine. 展开更多
关键词 GRAPHENE MXene COMPOSITES Hybrid structures BIOCOMPATIBILITY Cancer theranostics biomedical engineering
在线阅读 下载PDF
Computer Oriented Numerical Scheme for Solving Engineering Problems
16
作者 Mudassir Shams Naila Rafiq +2 位作者 Nasreen Kausar Nazir Ahmad Mir Ahmad Alalyani 《Computer Systems Science & Engineering》 SCIE EI 2022年第8期689-701,共13页
In this study,we construct a family of single root finding method of optimal order four and then generalize this family for estimating of all roots of non-linear equation simultaneously.Convergence analysis proves tha... In this study,we construct a family of single root finding method of optimal order four and then generalize this family for estimating of all roots of non-linear equation simultaneously.Convergence analysis proves that the local order of convergence is four in case of single root finding iterative method and six for simultaneous determination of all roots of non-linear equation.Some non-linear equations are taken from physics,chemistry and engineering to present the performance and efficiency of the newly constructed method.Some real world applications are taken from fluid mechanics,i.e.,fluid permeability in biogels and biomedical engineering which includes blood Rheology-Model which as an intermediate result give some nonlinear equations.These non-linear equations are then solved using newly developed simultaneous iterative schemes.Newly developed simultaneous iterative schemes reach to exact values on initial guessed values within given tolerance,using very less number of function evaluations in each step.Local convergence order of single root finding method is computed using CAS-Maple.Local computational order of convergence,CPU-time,absolute residuals errors are calculated to elaborate the efficiency,robustness and authentication of the iterative simultaneous method in its domain. 展开更多
关键词 biomedical engineering convergence order iterative method CPU-time simultaneous method
在线阅读 下载PDF
Auxetics in Biomedical Applications: A Review
17
作者 Sean Rose Dexter Siu +1 位作者 JD Zhu Reem Roufail 《Journal of Minerals and Materials Characterization and Engineering》 CAS 2023年第2期27-35,共9页
Materials exhibiting auxetic properties have a negative Poisson’s ratio, which intrigued researchers to understand the behavior of auxetic structure. Several researchers focused on the different auxetic cell designs,... Materials exhibiting auxetic properties have a negative Poisson’s ratio, which intrigued researchers to understand the behavior of auxetic structure. Several researchers focused on the different auxetic cell designs, while others focused on the auxetic applications. With the advance of additive manufacturing methods, computer-aided design and finite element analysis in recent decades, auxetics have been explored. One of the interesting applications is in the field of biomedical devices or implants, especially for certain natural biomedical organs such as tissues, certain ligaments that have auxetic properties. This paper is an overview of auxetic design approaches and biomedical applications. 展开更多
关键词 AUXETICS Negative Poisson’s Ratio BIOMATERIALS biomedical engineering
在线阅读 下载PDF
Porous nanofibrous dressing enables mesenchymal stem cell spheroid formation and delivery to promote diabetic wound healing
18
作者 Kexin Zhang Wenmin Zhang +4 位作者 Heng An Zhe Huang Yanzhen Wen Xiangyu Jiao Yongqiang Wen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期156-164,共9页
Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellul... Delayed and nonhealing of diabetic wounds imposes substantial economic burdens and physical pain on patients.Mesenchymal stem cells(MSCs)promote diabetic wound healing.Particularly when MSCs aggregate into multicellular spheroids,their therapeutic effect is enhanced.However,traditional culture platforms are inadequate for the efficient preparation and delivery of MSC spheroids,resulting in inefficiencies and inconveniences in MSC spheroid therapy.In this study,a three-dimensional porous nanofibrous dressing(NFD)is prepared using a combination of electrospinning and homogeneous freeze-drying.Using thermal crosslinking,the NFD not only achieves satisfactory elasticity but also maintains notable cytocompatibility.Through the design of its structure and chemical composition,the NFD allows MSCs to spontaneously form MSC spheroids with controllable sizes,serving as MSC spheroid delivery systems for diabetic wound sites.Most importantly,MSC spheroids cultured on the NFD exhibit improved secretion of vascular endothelial growth factor,basic fibroblast growth factor,and hepatocyte growth factor,thereby accelerating diabetic wound healing.The NFD provides a competitive strategy for MSC spheroid formation and delivery to promote diabetic wound healing. 展开更多
关键词 Electrospinning Homogenization biomedical engineering Nanomaterials Stem cell spheroids Diabetic wound healing
在线阅读 下载PDF
Millimetric devices for nerve stimulation:a promising path towards miniaturization
19
作者 Ryan M.Dorrian Anna V.Leonard Antonio Lauto 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1702-1706,共5页
Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implante... Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices. 展开更多
关键词 biomedical engineering deep brain stimulation electrical engineering electrical stimulation NEUROMODULATION peripheral nerve stimulation
暂未订购
Transfer Learning-Based Class Imbalance-Aware Shoulder Implant Classification from X-Ray Images
20
作者 Marut Jindal Birmohan Singh 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期892-912,共21页
Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the joint.It is often challenging fo... Total shoulder arthroplasty is a standard restorative procedure practiced by orthopedists to diagnose shoulder arthritis in which a prosthesis replaces the whole joint or a part of the joint.It is often challenging for doctors to identify the exact model and manufacturer of the prosthesis when it is unknown.This paper proposes a transfer learning-based class imbalance-aware prosthesis detection method to detect the implant’s manufacturer automatically from shoulder X-ray images.The framework of the method proposes a novel training approach and a new set of batch-normalization,dropout,and fully convolutional layers in the head network.It employs cyclical learning rates and weighting-based loss calculation mechanism.These modifications aid in faster convergence,avoid local-minima stagnation,and remove the training bias caused by imbalanced dataset.The proposed method is evaluated using seven well-known pre-trained models of VGGNet,ResNet,and DenseNet families.Experimentation is performed on a shoulder implant benchmark dataset consisting of 597 shoulder X-ray images.The proposed method improves the classification performance of all pre-trained models by 10–12%.The DenseNet-201-based variant has achieved the highest classification accuracy of 89.5%,which is 10%higher than existing methods.Further,to validate and generalize the proposed method,the existing baseline dataset is supplemented to six classes,including samples of two more implant manufacturers.Experimental results have shown average accuracy of 86.7%for the extended dataset and show the preeminence of the proposed method. 展开更多
关键词 biomedical engineering Artificial intelligence Total shoulder arthroplasty Prosthesis identification biomedical image classification
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部