In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondl...In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.展开更多
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
BACKGROUND Autoimmune hepatitis(AIH)is typically treated with immunomodulators and steroids.However,some patients are refractory to these treatments,necessitating alternative approaches.Biological therapies have recen...BACKGROUND Autoimmune hepatitis(AIH)is typically treated with immunomodulators and steroids.However,some patients are refractory to these treatments,necessitating alternative approaches.Biological therapies have recently been explored for these difficult cases.AIM To assess the efficacy and safety of biologics in AIH,focusing on patients unresponsive to standard treatments and evaluating outcomes such as serological markers and histological remission.METHODS A case-based systematic review was performed following the PRISMA protocol to evaluate the efficacy and safety of biological therapies in AIH.The primary focus was on serological improvement and histological remission.The secondary focus was on assessing therapy safety and additional outcomes.A standardized search command was applied to MEDLINE,EMBASE,and Cochrane Library databases to identify relevant studies.Inclusion criteria encompassed adult AIH patients treated with biologics.Data were analyzed based on demographics,prior treatments,and therapy-related outcomes.A narrative synthesis was employed to address biases and provide a comprehensive overview of the evidence.RESULTS A total of 352 studies were reviewed,with 30 selected for detailed analysis.Key findings revealed that Belimumab led to a favourable response in five out of eight AIH patients across two studies.Rituximab demonstrated high efficacy,with 41 out of 45 patients showing significant improvement across six studies.Basiliximab was assessed in a single study,where the sole patient treated experienced a beneficial outcome.Additionally,a notable number of AIH cases were induced by anti-tumor necrosis factor(TNF)medications,including 16 cases associated with infliximab and four cases with adalimumab.All these cases showed improvement upon withdrawal of the biologic agent.CONCLUSION Belimumab and Rituximab show promise as effective alternatives for managing refractory AIH,demonstrating significant improvements in clinical outcomes and liver function.However,the variability in patient responses to different therapies highlights the need for personalized treatment strategies.The risk of AIH induced by anti-TNF therapies underscores the need for vigilant monitoring and prompt symptom recognition.These findings support the incorporation of biologic agents into AIH treatment protocols,particularly for patients who do not respond to conventional therapies.展开更多
Spider mites are significant pests in agricultural production.The increasing resistance of spider mites,along with environmental pollution and ecological imbalance caused by their control,is primarily attributed to th...Spider mites are significant pests in agricultural production.The increasing resistance of spider mites,along with environmental pollution and ecological imbalance caused by their control,is primarily attributed to the long-term use of chemical acaricides in agriculture.In contrast,bioactive substances of biological origin offer advantages such as wide availability,environmental friendliness,and low tendency to induce resistance,making them a research hotspot for spider mite control.This review summarizes recent advances in the use of plant-derived active compounds(exemplified by extracts from Veratrum rhizomes),RNA interference(RNAi)technology,and microorganism-derived active substances for controlling spider mites.These bioactive agents exert acaricidal effects by disrupting the nervous system,interfering with metabolic processes,or silencing key genes in mites,demonstrating favorable efficacy and considerable potential for development.However,challenges remain,including poor environmental stability,slow action,high production costs,and insufficient understanding of their effects on non-target organisms.Therefore,future research should focus on the screening and development of novel bioactive substances of biological origin,elucidation of their mechanisms of action,optimization of formulation technologies,and assessment of their ecological safety.These efforts will provide valuable insights for promoting the advancement of bioactive substances and supporting sustainable agricultural development.展开更多
Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and ...Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.展开更多
A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of b...A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of biological fluids of human organs is presented and experimentally tested.An original model of layered phase scanning of polycrystalline architectonics of supramolecular networks of biological fluid facies is proposed for the purpose of theoretical justification and prognostic use of the obtained results.On its basis,algorithms of Jones-matrix reconstruction of thesiograms of birefringence and dichroism of facies of synovial fluid,bile and blood are found.As a result,layered thesiograms of linear and circular birefringence and dichroism of facies with different spatial–angular architectonics of supramolecular networks are experimentally obtained for the first time.Within the framework of statistical analysis of experimental data,new objective markers(asymmetry and excess of optical anisotropy parameter distributions)for diagnostics of pathological changes in the optical anisotropy of biological fluid facies were defined and clinically tested.As a result,an excellent level of balanced accuracy of the developed polarization–interference Jones-matrix method of layer-by-layer reconstruction of thesiograms of polycrystalline supramolecular networks in differential diagnostics of bile facies(cholelithiasis),synovial fluid(reactive synovitis–septic arthritis)and whole blood(follicular adenoma–papillary thyroid cancer)was achieved.展开更多
Entomopathogenic nematodes(EPNs)represent a promising biological control strategy for managing insect pest populations,offering an environmentally sustainable alternative to conventional chemical pesticides.This revie...Entomopathogenic nematodes(EPNs)represent a promising biological control strategy for managing insect pest populations,offering an environmentally sustainable alternative to conventional chemical pesticides.This review examines the application of EPNs in forestry,highlighting their biological and ecological characteristics,mechanisms of action,and efficacy against key forest pests.By exploring various methods of EPN application,including soil injection,foliar spray,and trunk injection,practical challenges and potential solutions for effective implementation are assessed.Case studies demonstrate successful use of EPNs in controlling pests such as bark beetles,wood borers,and root weevils,underscoring their potential for integration into integrated pest management(IPM)programs.Despite current limitations,including environmental sensitivity and application constraints,ongoing research and technological advancements continue to enhance the efficacy and reliability of EPNs.This review underscores the importance of EPNs in sustainable forestry practices and calls for further research to optimize their use and to address existing challenges,ultimately contributing to healthier forest ecosystems and reduced reliance on chemical pesticides.展开更多
Eutrophication is a significant challenge for surface water,with sediment phosphorus(P)release being a key contributor.Although biological aluminum-based P-inactivation agent(BA-PIA)has shown effectiveness in controll...Eutrophication is a significant challenge for surface water,with sediment phosphorus(P)release being a key contributor.Although biological aluminum-based P-inactivation agent(BA-PIA)has shown effectiveness in controlling P release from sediment,the efficiency and mechanism by BA-PIA capping is still not fully understood.This study explored the efficiency and mechanism of using BA-PIA capping controlling P release from sediment.The main mechanisms controlling P release from sediment via BA-PIA capping involved transforming mobile and less stable fractions into stable ones,passivating DGT-labile P and establishing a 13 mm’P static layer’within the sediment.Additionally,BA-PIA’s impact on Fe redox processes significantly influenced P release from the sediment.After BA-PIA capping,notable reductionswere observed in total P,soluble reactive P(SRP),and diffusive gradient in thin-films(DGT)-measured labile P(DGT-labile P)concentration in the overlying water,with reduction rates of 95.6%,92.7%,and 96.5%,respectively.After BA-PIA capping,the diffusion flux of SRP across the sediment-water interface and the apparent P diffusion flux decreased by 91.3%and 97.8%,respectively.Additionally,BA-PIA capping led to reduced concentrations of SRP,DGT-labile P,and DGT-measured labile Fe(II)in the sediment interstitial water.Notably,BA-PIA capping significantly reduced P content and facilitated transformation in the 0∼30 mm sediment layers but not in the 30∼45 mm and 45∼60 mm sediment layers for NaOH-extractable inorganic P and HCl-extracted P.These findings offer a theoretical basis and technical support for the practical application of BA-PIA capping to control P release from sediment.展开更多
Panax notoginseng is a traditional Chinese medicine containing various constituents,including the saponins,polysaccharides,polyacetylenes,amino acids,etc.It has beneficial functions,such as the anti-inflammatory,antit...Panax notoginseng is a traditional Chinese medicine containing various constituents,including the saponins,polysaccharides,polyacetylenes,amino acids,etc.It has beneficial functions,such as the anti-inflammatory,antitumor,hepatoprotective,and anti-aging effects.Among these,P.notoginseng polysaccharides(PNPs)have been exploited because of their extensive pharmacological effects,being ranked as one of the current research hotspots,especially for the functional foods and medical practice.In this review,the literature related to PNPs in the past 20 years was surveyed and analyzed using both the China National Knowledge Infrastructure(CNKI)and Web of Science(WOS)databases.The visualization diagram shows that current studies on PNPs mainly focus on the antioxidant and immunomodulatory activities and structural characterization.In addition,the extraction,separation,purification,chemical analysis,structural characteristics,bioactivities,and applications of PNPs are outlined,in detail,aimed to provide valuable information for the further study,development,and utilization regarding PNPs.展开更多
Nano ceria(nano-CeO_(2))has been widely applied in various fields of industry and daily life,however,knowledge regarding the biological effects of nano-CeO_(2)with different intrinsic physicochemical properties remain...Nano ceria(nano-CeO_(2))has been widely applied in various fields of industry and daily life,however,knowledge regarding the biological effects of nano-CeO_(2)with different intrinsic physicochemical properties remains limited.In this study,we investigated the impact of nano-CeO_(2)with different properties on the growth of a typical environmental species(romaine lettuce,Lactuca sativa L.)by exposing the plant to four types of CeO_(2)(rod-like nano-CeO_(2)(RNC),cubic nano-CeO_(2)(CNC),spherical nano-CeO_(2)(SNC)and commercial irregular CeO_(2)(CIC))during the germination stage.The results indicated that different types of CeO_(2)exhibited varying inhibitory effects on plant growth.RNC and SNC significantly inhibited the elongation of roots and shoots,while CNC and CIC did not have a significant impact.We further examined the distribution and biotransformation of the four CeO_(2)in plant tissues using transmission electron microscopy(TEM)and synchrotron X-ray absorption near edge structure(XANES).Specifically,the positively charged RNC and SNC were more readily adsorbed onto the root surface,and needle-like nanoclusters were deposited in the intercellular space inside the roots.The absolute content of Ce(III)in the roots romaine lettuce was in the order of RNC>SNC>>CNC>>CIC.The size and shape(i.e.,exposed crystal surface)of the materials affected their reactivity and dissolution ratios,and zeta potentials affected their bioavailability,both of which influenced the overall contents of Ce^(3+)ions in plant tissues.Thus,these characteristics together led to different biological effects.These findings highlight the importance of considering the intrinsic properties of nano-CeO_(2)when assessing their environmental and biological effects.展开更多
Intracellular polymerization is an emerging field,showcasing high diversity and efficiency of chemistry.Motivated by the principles of natural biomolecular synthesis,polymerization within living cells is believed to b...Intracellular polymerization is an emerging field,showcasing high diversity and efficiency of chemistry.Motivated by the principles of natural biomolecular synthesis,polymerization within living cells is believed to be a powerful and versatile tool to modulate cell behavior.In this review,we summarized recent advances and future trends in the field of intracellular polymerization,specifically focusing on covalent and supramolecular polymerization.This discussion comprehensively covers the diverse chemical designs,reaction mechanisms,responsive features,and functional applications.Furthermore,we also clarified the connection between preliminary design of polymer synthesis and their subsequent biological applications.We hope this review will serve as an innovative platform for chemists and biologists to regulate biological functions in practical applications and clinical trials.展开更多
Rutin,also known as vitamin P,belongs to the flavonoid class of compounds and is widely present in plants.Its ability to bind with albumin in the blood helps maintain capillary permeability,leading to its extensive us...Rutin,also known as vitamin P,belongs to the flavonoid class of compounds and is widely present in plants.Its ability to bind with albumin in the blood helps maintain capillary permeability,leading to its extensive use for cardiovascular protection.This review aimed to provide insights into the development of rutin raw material industry in China and its future applications in various fields,such as medicine,healthcare,food,and animal husbandry.The study began by comparing rutin quality standards across China,the United States and Europe,outlined the industrial extraction processes of rutin,and examined the biological activity and potential medical applications of rutin.展开更多
Introduction: Diabetes remains a real public health problem today, due to its associated morbidity and mortality. It induces numerous metabolic, biochemical, hematological, and immunological changes, responsible for m...Introduction: Diabetes remains a real public health problem today, due to its associated morbidity and mortality. It induces numerous metabolic, biochemical, hematological, and immunological changes, responsible for multiple complications. The objective of this study was to characterize clinically and biologically type 2 diabetic patients followed at the National Center for Diabetology and Arterial Hypertension of the Central Hospital of Yaoundé. Method: This prospective, cross-sectional, and analytical study took place from April 5 to July 31, 2023 (4 months) on 100 diabetic patients of both sexes (61 women and 39 men), aged from 31 to 88 years. Body Mass Index, systolic and diastolic blood pressure, and cardiac frequency were measured on each of the patients. Subsequently, blood was collected from the patients for the determination of the complete blood count, HBA1c, lipid profile, serum albumin, TNF-α, and IL-6 levels. The data were analyzed using SPSS 17.0 software. Results: The age average of our population was 56.99 ± 11.51 years, the population was primarily female (61%) and primarily between the ages of 55 and 88. 67% of respondents were married. 59% went to secondary school. 73% of them lived in urban areas. 30% were obese and 40% were overweight, with an average BMI of 28.75 kg/m2. 76% of patients took oral antidiabetic medications. HbA1c level average was 8.65%, with 60% having readings above 6.5%. Low hemoglobin and hypochromia were among the abnormalities of red blood cells observed. Lipid profiles revealed low HDL-cholesterol and high triglycerides and cholesterol. Elevated levels of TNF-α and IL-6 indicated inflammation and cardiovascular risk. Conclusion: These results indicate the necessity of focused diabetic care and management on diabetic patients attending the central hospital of Yaoundé, Cameroon.展开更多
This paper systematically introduces the extraction process of the active components from the essential oil of Melaleuca alternifolia,elucidates the biological functions of these active components,and summarizes their...This paper systematically introduces the extraction process of the active components from the essential oil of Melaleuca alternifolia,elucidates the biological functions of these active components,and summarizes their applications in agricultural pest control.Furthermore,the paper examines the future developmental directions of M.alternifolia essential oil in pest control,along with the current challenges associated with its application.The aim is to offer insights for future research on botanical essential oils,particularly regarding their biological functions and applications in agricultural pest control.展开更多
Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the h...Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the human body.With its high content and wide variety of phenolic compounds,M.oleifera Lam.has been widely studied for its health benefits.The phenolic compounds in M.oleifera Lam.(MOPCs)can be a potential source of functional food ingredients in pharmaceutical and industrial applications.Numerous studies have shown that MOPCs have antioxidant,anti-obesity,anti-diabetic,and antibacterial effects.Although the research on MOPCs has been gradually increasing,the extraction,isolation,identification,biological activities,and comprehensive application of MOPCs need a more systematic summary and generalization.Therefore,this paper reviews the isolation and extraction methods,structure identification,biological activities,and comprehensive applications to provide a further reference for the research and application of MOPCs.展开更多
Biological contaminants(BCs),including but not limited to various pathogens and their endogenous pol-lutants such as intracellular pathogens and antimicrobial resistance genes(ARGs),are ubiquitously detected in efflue...Biological contaminants(BCs),including but not limited to various pathogens and their endogenous pol-lutants such as intracellular pathogens and antimicrobial resistance genes(ARGs),are ubiquitously detected in effluent of wastewater and drinking water treatment systems which were originally designed to remove common indicator bacteria,resulting in potential impacts on public health.Although there are many emerging technologies that showing promising antimicrobial effects,few have progressed to the actual water scenarios.It’s crucial to understand the main knowledge gaps and thereby design the future developments to better meet engineering requirements.In this review,we first summarize the perfor-mance of conventional water treatment towards BCs removal.Then we showcase the advances of proof-of-concept strategies,including nanotechnology,advanced oxidation process,biological control process and integrated techniques,for BCs control in light of antimicrobial mechanisms,characteristics,proper niches in water treatment,challenges and latest improvements.Further,we proposed a semi-quantitative framework coupling life cycle assessment(LCA)and analytic hierarchy process(AHP)to assess and compare the application potential of representative pilot technologies,in which the antimicro-bial effects,economic issues and sustainability are comprehensively considered.For wastewater treat-ment,non-thermal plasma weights highest among the emerging technologies and outperforms conventional disinfection in terms of efficacy indicators(overall inactivation rate,ARGs removal rate,and growth inhibition),but fall behind overall mainly due to more energy input.Bacteriophage-based treatment has the potential to synergistically inactive the persistent pathogens in combination with con-ventional disinfection,serving as a cost-effective and environmental-friendly supplement.For drinking water treatment,the integrated photocatalytic nanocomposite receives the highest application potential among the emerging technologies and appears to be supplementary or even alternative next-generation disinfectants.This review shares valuable insights to propel the proof-of-concept antimicrobial trials towards industrial procedures.展开更多
Triply periodic minimal surface(TPMS)-based bone implants are an innovative approach in orthopedic implantology,offering customized solutions for bone defect repair and regeneration.This review comprehensively examine...Triply periodic minimal surface(TPMS)-based bone implants are an innovative approach in orthopedic implantology,offering customized solutions for bone defect repair and regeneration.This review comprehensively examines the current research landscape of TPMS-based bone implants,addressing key challenges and proposing future directions.It explores design strategies aimed at optimizing mechanical strength and enhancing biological integration,with a particular emphasis on TPMS structures.These design strategies include graded,hierarchical,and hybrid designs,each contributing to the overall functionality and performance of the implants.This review also highlights state-of-the-art fabrication technologies,particularly advancements in additive manufacturing(AM)techniques for creating metal-based,polymer-based,and ceramic-based bone implants.The ability to precisely control the architecture of TPMS structures using AM techniques is crucial for tailoring the mechanical and biological properties of such implants.Furthermore,this review critically evaluates the biological performance of TPMS implants,focusing on their potential to promote bone ingrowth and regeneration.Key factors,such as mechanical properties,permeability,and biocompatibility,are examined to determine the effectiveness of these implants in clinical applications.By synthesizing existing knowledge and proposing innovative research directions,this review underscores the transformative potential of TPMS-based bone implants in orthopedic surgery.The objective is to improve clinical outcomes and enhance patient care through advanced implant designs and manufacturing techniques.展开更多
In current memristor-based neuromorphic computing research,several studies face the challenge of realizing only a single function at a time or having isolated functions.This limitation is particularly evident when sim...In current memristor-based neuromorphic computing research,several studies face the challenge of realizing only a single function at a time or having isolated functions.This limitation is particularly evident when simulating biological cognition,as the overall synergy between multiple cognitive functions is difficult to represent.In this work,a high-performance heterojunction memristor is presented at first.The memristor-based neural network and functional circuit are further implemented to realize and integrate multiple cognitive functions.Specifically,the proposed photoelectric memristor has the structure of Ag/ZnO-SnO_(2)/WO_(3-x)/ITO,it exhibits various synaptic behaviors under external modulations,which are characterized by good stability and repeatability.Based on this device,a neural network is built to realize the basic recognition function in biological cognition.The recognition results are translated into different labelled voltage signals and subsequently fed into a memristor-based functional circuit.By leveraging memory characteristics and tunable conductance of the memristor,and controlling the specific circuit functionalities,the input signals are processed to produce different outputs representing various cognitive functions.This methodology allows the realization and integration of recognition,memory,learning,association,relearning,and forgetting into one single system,thereby enabling a more comprehensive and authentic simulation of biological cognition.This work presents a novel memristor and a method for achieving and integrating multiple neuromorphic computing functions within a single system,providing a successful example for achieving complete biological function.展开更多
Zearalenone(ZEN)is a non-steroidal estrogenic mycotoxin biosynthesized by the polyketide reaction,which has estrogenic effects and triggers toxic effects,such as reproductive toxicity,hepatotoxicity,genotoxicity,and i...Zearalenone(ZEN)is a non-steroidal estrogenic mycotoxin biosynthesized by the polyketide reaction,which has estrogenic effects and triggers toxic effects,such as reproductive toxicity,hepatotoxicity,genotoxicity,and immunotoxicity in organism.Due to its impact on human and animal health and the economic losses engendered by ZEN,detoxification strategies for contaminated foods and feeds to reduce or eliminate the toxic effects of ZEN by chemical,physical and biological methods are crucial.Detoxification by microbial means has broad application prospects,with the advantages of high efficiency,high specificity,mild conditions of action,no harmful metabolites,and safety.It may help to improve the function of intestinal barriers so that the intestinal epithelial barrier is more resistant to mycotoxins,and other pathogenic microorganisms.This article provided an overview of the metabolic pathways and animal toxicity of ZEN in organism,and summarized the effects of the current research status,detoxification mechanisms and in vivo applications of ZEN biodetoxification,in order to provide a reference for the prevention and control of ZEN.展开更多
Depression is a severe mood disorder characterized by complex suicide mechanisms that involve a multitude of psychosocial and biological fac-tors.This paper presents a comprehensive analysis of the psychosocial factor...Depression is a severe mood disorder characterized by complex suicide mechanisms that involve a multitude of psychosocial and biological fac-tors.This paper presents a comprehensive analysis of the psychosocial factors influencing suicidal behavior in depression,including social support,life events,depressive symptoms,and personality traits,as well as biological factors such as brain-derived neurotrophic factor(BDNF),erotonin(5-TH)system dysfunction,and hypothalam-ic-pituitary-adrenal(HPA)axis abnormalities.Collectively,these factors significantly influence an individual’s risk of suicide,with biological factors serving as potential biomarkers for suicidal actions and psychosocial factors underscoring the impact of environmental and individual experiences.Understanding the interaction of these factors is crucial for comprehending and preventing suicidal behavior in depression.Despite considerable progress,current studies have limitations,particularly regarding the unclear interaction mechanisms between psychosocial and biological factors and a predominant focus on adult populations,with insufficient comprehensive studies on adolescents.展开更多
基金Supported by National Natural Science Foundation of China(12101482)Postdoctoral Science Foundation of China(2022M722604)+2 种基金General Project of Science and Technology of Shaanxi Province(2023-YBSF-372)The Natural Science Foundation of Shaan Xi Province(2023-JCQN-0016)Shannxi Mathmatical Basic Science Research Project(23JSQ042)。
文摘In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
文摘BACKGROUND Autoimmune hepatitis(AIH)is typically treated with immunomodulators and steroids.However,some patients are refractory to these treatments,necessitating alternative approaches.Biological therapies have recently been explored for these difficult cases.AIM To assess the efficacy and safety of biologics in AIH,focusing on patients unresponsive to standard treatments and evaluating outcomes such as serological markers and histological remission.METHODS A case-based systematic review was performed following the PRISMA protocol to evaluate the efficacy and safety of biological therapies in AIH.The primary focus was on serological improvement and histological remission.The secondary focus was on assessing therapy safety and additional outcomes.A standardized search command was applied to MEDLINE,EMBASE,and Cochrane Library databases to identify relevant studies.Inclusion criteria encompassed adult AIH patients treated with biologics.Data were analyzed based on demographics,prior treatments,and therapy-related outcomes.A narrative synthesis was employed to address biases and provide a comprehensive overview of the evidence.RESULTS A total of 352 studies were reviewed,with 30 selected for detailed analysis.Key findings revealed that Belimumab led to a favourable response in five out of eight AIH patients across two studies.Rituximab demonstrated high efficacy,with 41 out of 45 patients showing significant improvement across six studies.Basiliximab was assessed in a single study,where the sole patient treated experienced a beneficial outcome.Additionally,a notable number of AIH cases were induced by anti-tumor necrosis factor(TNF)medications,including 16 cases associated with infliximab and four cases with adalimumab.All these cases showed improvement upon withdrawal of the biologic agent.CONCLUSION Belimumab and Rituximab show promise as effective alternatives for managing refractory AIH,demonstrating significant improvements in clinical outcomes and liver function.However,the variability in patient responses to different therapies highlights the need for personalized treatment strategies.The risk of AIH induced by anti-TNF therapies underscores the need for vigilant monitoring and prompt symptom recognition.These findings support the incorporation of biologic agents into AIH treatment protocols,particularly for patients who do not respond to conventional therapies.
文摘Spider mites are significant pests in agricultural production.The increasing resistance of spider mites,along with environmental pollution and ecological imbalance caused by their control,is primarily attributed to the long-term use of chemical acaricides in agriculture.In contrast,bioactive substances of biological origin offer advantages such as wide availability,environmental friendliness,and low tendency to induce resistance,making them a research hotspot for spider mite control.This review summarizes recent advances in the use of plant-derived active compounds(exemplified by extracts from Veratrum rhizomes),RNA interference(RNAi)technology,and microorganism-derived active substances for controlling spider mites.These bioactive agents exert acaricidal effects by disrupting the nervous system,interfering with metabolic processes,or silencing key genes in mites,demonstrating favorable efficacy and considerable potential for development.However,challenges remain,including poor environmental stability,slow action,high production costs,and insufficient understanding of their effects on non-target organisms.Therefore,future research should focus on the screening and development of novel bioactive substances of biological origin,elucidation of their mechanisms of action,optimization of formulation technologies,and assessment of their ecological safety.These efforts will provide valuable insights for promoting the advancement of bioactive substances and supporting sustainable agricultural development.
文摘Our gosl was to develop and experimentally validate a polarization-interferene method for phsae scanning of laser speckle fields generated by diffuse layers of birefringent biological tissues.This method isolates and uses new diagnostic parameters related to the"phsse WAvEs of local depolarization".We combined polarization-interferenæregistration with phase scanning of complex amplitude distributions in diffuse Laser speckle fields to detect phase waves of local depolarization in birefringent fibrillar networks of biological tisue and messure their modulation depth.This eppгоsch led to the discovery of new criteria for differentiating verious necrotic changes in diffuse histological samples of myocardial tisue from decmsed individuals with"ischemic heart disase(IHD)--cute coronary insufficiency(ACT)",even in the presænce of a high level of depolarized bckground.To evaluate the degree of necrotic changes in the optical anisotropy of difuse myocardial Layers,a new quantitative parameter--modulation depth of local depolarization wave fluctustions-has been proposed.Using this approsch,for the first time,differentiation of diffuse myocardial samples from decessed individuals with IHD and ACI was achieved witha very good 90.45%and outstanding aocuracy of 95.2%.
文摘A new polarization–interference biomedical diagnostic three-dimensional(3D)Jones-matrix technology with digital Fourier reconstruction of layered maps of optical anisotropy(thesiograms)of dehydrated films(facies)of biological fluids of human organs is presented and experimentally tested.An original model of layered phase scanning of polycrystalline architectonics of supramolecular networks of biological fluid facies is proposed for the purpose of theoretical justification and prognostic use of the obtained results.On its basis,algorithms of Jones-matrix reconstruction of thesiograms of birefringence and dichroism of facies of synovial fluid,bile and blood are found.As a result,layered thesiograms of linear and circular birefringence and dichroism of facies with different spatial–angular architectonics of supramolecular networks are experimentally obtained for the first time.Within the framework of statistical analysis of experimental data,new objective markers(asymmetry and excess of optical anisotropy parameter distributions)for diagnostics of pathological changes in the optical anisotropy of biological fluid facies were defined and clinically tested.As a result,an excellent level of balanced accuracy of the developed polarization–interference Jones-matrix method of layer-by-layer reconstruction of thesiograms of polycrystalline supramolecular networks in differential diagnostics of bile facies(cholelithiasis),synovial fluid(reactive synovitis–septic arthritis)and whole blood(follicular adenoma–papillary thyroid cancer)was achieved.
文摘Entomopathogenic nematodes(EPNs)represent a promising biological control strategy for managing insect pest populations,offering an environmentally sustainable alternative to conventional chemical pesticides.This review examines the application of EPNs in forestry,highlighting their biological and ecological characteristics,mechanisms of action,and efficacy against key forest pests.By exploring various methods of EPN application,including soil injection,foliar spray,and trunk injection,practical challenges and potential solutions for effective implementation are assessed.Case studies demonstrate successful use of EPNs in controlling pests such as bark beetles,wood borers,and root weevils,underscoring their potential for integration into integrated pest management(IPM)programs.Despite current limitations,including environmental sensitivity and application constraints,ongoing research and technological advancements continue to enhance the efficacy and reliability of EPNs.This review underscores the importance of EPNs in sustainable forestry practices and calls for further research to optimize their use and to address existing challenges,ultimately contributing to healthier forest ecosystems and reduced reliance on chemical pesticides.
基金supported by the National Natural Science Foundation of China(No.51878300)the National Natural Science Foundation of Xiamen City(No.3502Z202373041)the Water Conservancy Science and Technology Plan Project(No.RC2127).
文摘Eutrophication is a significant challenge for surface water,with sediment phosphorus(P)release being a key contributor.Although biological aluminum-based P-inactivation agent(BA-PIA)has shown effectiveness in controlling P release from sediment,the efficiency and mechanism by BA-PIA capping is still not fully understood.This study explored the efficiency and mechanism of using BA-PIA capping controlling P release from sediment.The main mechanisms controlling P release from sediment via BA-PIA capping involved transforming mobile and less stable fractions into stable ones,passivating DGT-labile P and establishing a 13 mm’P static layer’within the sediment.Additionally,BA-PIA’s impact on Fe redox processes significantly influenced P release from the sediment.After BA-PIA capping,notable reductionswere observed in total P,soluble reactive P(SRP),and diffusive gradient in thin-films(DGT)-measured labile P(DGT-labile P)concentration in the overlying water,with reduction rates of 95.6%,92.7%,and 96.5%,respectively.After BA-PIA capping,the diffusion flux of SRP across the sediment-water interface and the apparent P diffusion flux decreased by 91.3%and 97.8%,respectively.Additionally,BA-PIA capping led to reduced concentrations of SRP,DGT-labile P,and DGT-measured labile Fe(II)in the sediment interstitial water.Notably,BA-PIA capping significantly reduced P content and facilitated transformation in the 0∼30 mm sediment layers but not in the 30∼45 mm and 45∼60 mm sediment layers for NaOH-extractable inorganic P and HCl-extracted P.These findings offer a theoretical basis and technical support for the practical application of BA-PIA capping to control P release from sediment.
基金supported by the National Key R&D Program of China(2022YFC3501805)the Science and Technology Program of Tianjin in China(23ZYJDSS00030)+2 种基金the National Natural Science Foundation of China(82374030)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2021KJ127)Tianjin Outstanding Youth Fund(23JCJQJC00030).
文摘Panax notoginseng is a traditional Chinese medicine containing various constituents,including the saponins,polysaccharides,polyacetylenes,amino acids,etc.It has beneficial functions,such as the anti-inflammatory,antitumor,hepatoprotective,and anti-aging effects.Among these,P.notoginseng polysaccharides(PNPs)have been exploited because of their extensive pharmacological effects,being ranked as one of the current research hotspots,especially for the functional foods and medical practice.In this review,the literature related to PNPs in the past 20 years was surveyed and analyzed using both the China National Knowledge Infrastructure(CNKI)and Web of Science(WOS)databases.The visualization diagram shows that current studies on PNPs mainly focus on the antioxidant and immunomodulatory activities and structural characterization.In addition,the extraction,separation,purification,chemical analysis,structural characteristics,bioactivities,and applications of PNPs are outlined,in detail,aimed to provide valuable information for the further study,development,and utilization regarding PNPs.
基金funded by National Key R&D Program of China(2022YFA1207600)the National Natural Science Foundation of China(12175263,11875267,and 12075262).
文摘Nano ceria(nano-CeO_(2))has been widely applied in various fields of industry and daily life,however,knowledge regarding the biological effects of nano-CeO_(2)with different intrinsic physicochemical properties remains limited.In this study,we investigated the impact of nano-CeO_(2)with different properties on the growth of a typical environmental species(romaine lettuce,Lactuca sativa L.)by exposing the plant to four types of CeO_(2)(rod-like nano-CeO_(2)(RNC),cubic nano-CeO_(2)(CNC),spherical nano-CeO_(2)(SNC)and commercial irregular CeO_(2)(CIC))during the germination stage.The results indicated that different types of CeO_(2)exhibited varying inhibitory effects on plant growth.RNC and SNC significantly inhibited the elongation of roots and shoots,while CNC and CIC did not have a significant impact.We further examined the distribution and biotransformation of the four CeO_(2)in plant tissues using transmission electron microscopy(TEM)and synchrotron X-ray absorption near edge structure(XANES).Specifically,the positively charged RNC and SNC were more readily adsorbed onto the root surface,and needle-like nanoclusters were deposited in the intercellular space inside the roots.The absolute content of Ce(III)in the roots romaine lettuce was in the order of RNC>SNC>>CNC>>CIC.The size and shape(i.e.,exposed crystal surface)of the materials affected their reactivity and dissolution ratios,and zeta potentials affected their bioavailability,both of which influenced the overall contents of Ce^(3+)ions in plant tissues.Thus,these characteristics together led to different biological effects.These findings highlight the importance of considering the intrinsic properties of nano-CeO_(2)when assessing their environmental and biological effects.
基金financially supported by the National Key R&D Program of China(No.2023YFA0915300)the National Natural Science Foundation of China(Nos.52233012,22405212 and22471219)the Funds for Creative Research Groups of China of the National Natural Science Foundation of China(No.21821001)。
文摘Intracellular polymerization is an emerging field,showcasing high diversity and efficiency of chemistry.Motivated by the principles of natural biomolecular synthesis,polymerization within living cells is believed to be a powerful and versatile tool to modulate cell behavior.In this review,we summarized recent advances and future trends in the field of intracellular polymerization,specifically focusing on covalent and supramolecular polymerization.This discussion comprehensively covers the diverse chemical designs,reaction mechanisms,responsive features,and functional applications.Furthermore,we also clarified the connection between preliminary design of polymer synthesis and their subsequent biological applications.We hope this review will serve as an innovative platform for chemists and biologists to regulate biological functions in practical applications and clinical trials.
基金Supported by the Scientific and Technological Research Project Foundation of Henan Provincial Scientific and Technological Department(242102310530,242102310119,252102310498)the Zhumadian Science and Technology Innovation Youth Special Project(QNZX202413)+1 种基金the Henan Provincial Medical Science and Technology Tackling Program(LHGJ20241009,LHGJ20241006)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25B180015,25B230006)。
文摘Rutin,also known as vitamin P,belongs to the flavonoid class of compounds and is widely present in plants.Its ability to bind with albumin in the blood helps maintain capillary permeability,leading to its extensive use for cardiovascular protection.This review aimed to provide insights into the development of rutin raw material industry in China and its future applications in various fields,such as medicine,healthcare,food,and animal husbandry.The study began by comparing rutin quality standards across China,the United States and Europe,outlined the industrial extraction processes of rutin,and examined the biological activity and potential medical applications of rutin.
文摘Introduction: Diabetes remains a real public health problem today, due to its associated morbidity and mortality. It induces numerous metabolic, biochemical, hematological, and immunological changes, responsible for multiple complications. The objective of this study was to characterize clinically and biologically type 2 diabetic patients followed at the National Center for Diabetology and Arterial Hypertension of the Central Hospital of Yaoundé. Method: This prospective, cross-sectional, and analytical study took place from April 5 to July 31, 2023 (4 months) on 100 diabetic patients of both sexes (61 women and 39 men), aged from 31 to 88 years. Body Mass Index, systolic and diastolic blood pressure, and cardiac frequency were measured on each of the patients. Subsequently, blood was collected from the patients for the determination of the complete blood count, HBA1c, lipid profile, serum albumin, TNF-α, and IL-6 levels. The data were analyzed using SPSS 17.0 software. Results: The age average of our population was 56.99 ± 11.51 years, the population was primarily female (61%) and primarily between the ages of 55 and 88. 67% of respondents were married. 59% went to secondary school. 73% of them lived in urban areas. 30% were obese and 40% were overweight, with an average BMI of 28.75 kg/m2. 76% of patients took oral antidiabetic medications. HbA1c level average was 8.65%, with 60% having readings above 6.5%. Low hemoglobin and hypochromia were among the abnormalities of red blood cells observed. Lipid profiles revealed low HDL-cholesterol and high triglycerides and cholesterol. Elevated levels of TNF-α and IL-6 indicated inflammation and cardiovascular risk. Conclusion: These results indicate the necessity of focused diabetic care and management on diabetic patients attending the central hospital of Yaoundé, Cameroon.
基金Supported by Undergraduate Training Programs for Innovation and Entrepreneurship of Guangdong Province(202310580005)Youth Project of Zhaoqing University(QN202443)China Agriculture Research System of MOF and MARA(CARS-26).
文摘This paper systematically introduces the extraction process of the active components from the essential oil of Melaleuca alternifolia,elucidates the biological functions of these active components,and summarizes their applications in agricultural pest control.Furthermore,the paper examines the future developmental directions of M.alternifolia essential oil in pest control,along with the current challenges associated with its application.The aim is to offer insights for future research on botanical essential oils,particularly regarding their biological functions and applications in agricultural pest control.
基金supported by Major Project of Science and Technology Department of Yunnan Province(202002AA100005,202102AE090027-2)National Natural Science Foundation of China(82260703)+1 种基金Cassava Industrial Technology System of China(CARS11-YNTY)Yunnan Province Ten Thousand Plan Industrial Technology Talents Project(YNWR-CYJS-2020-010)。
文摘Moringa oleifera Lam.is a Moringa genus in the Moringaceae family that is high in nutrients and has a wide range of applications.Phenolic compounds are widely found in plants and have various health benefits for the human body.With its high content and wide variety of phenolic compounds,M.oleifera Lam.has been widely studied for its health benefits.The phenolic compounds in M.oleifera Lam.(MOPCs)can be a potential source of functional food ingredients in pharmaceutical and industrial applications.Numerous studies have shown that MOPCs have antioxidant,anti-obesity,anti-diabetic,and antibacterial effects.Although the research on MOPCs has been gradually increasing,the extraction,isolation,identification,biological activities,and comprehensive application of MOPCs need a more systematic summary and generalization.Therefore,this paper reviews the isolation and extraction methods,structure identification,biological activities,and comprehensive applications to provide a further reference for the research and application of MOPCs.
基金supported by the National Natural Science Foundation of China(52293443,52321005,52230004)the Natural Science Foundation of Guangdong Basic and Applied Basic Research Foundation(2024A1515010085)+1 种基金Shenzhen Science and Technology Program(GXWD20231127195344001 and JCYJ20241202123735045)Shenzhen Overseas High-level Talents Research Startup Program(20200518750C).
文摘Biological contaminants(BCs),including but not limited to various pathogens and their endogenous pol-lutants such as intracellular pathogens and antimicrobial resistance genes(ARGs),are ubiquitously detected in effluent of wastewater and drinking water treatment systems which were originally designed to remove common indicator bacteria,resulting in potential impacts on public health.Although there are many emerging technologies that showing promising antimicrobial effects,few have progressed to the actual water scenarios.It’s crucial to understand the main knowledge gaps and thereby design the future developments to better meet engineering requirements.In this review,we first summarize the perfor-mance of conventional water treatment towards BCs removal.Then we showcase the advances of proof-of-concept strategies,including nanotechnology,advanced oxidation process,biological control process and integrated techniques,for BCs control in light of antimicrobial mechanisms,characteristics,proper niches in water treatment,challenges and latest improvements.Further,we proposed a semi-quantitative framework coupling life cycle assessment(LCA)and analytic hierarchy process(AHP)to assess and compare the application potential of representative pilot technologies,in which the antimicro-bial effects,economic issues and sustainability are comprehensively considered.For wastewater treat-ment,non-thermal plasma weights highest among the emerging technologies and outperforms conventional disinfection in terms of efficacy indicators(overall inactivation rate,ARGs removal rate,and growth inhibition),but fall behind overall mainly due to more energy input.Bacteriophage-based treatment has the potential to synergistically inactive the persistent pathogens in combination with con-ventional disinfection,serving as a cost-effective and environmental-friendly supplement.For drinking water treatment,the integrated photocatalytic nanocomposite receives the highest application potential among the emerging technologies and appears to be supplementary or even alternative next-generation disinfectants.This review shares valuable insights to propel the proof-of-concept antimicrobial trials towards industrial procedures.
基金funded by the National Natural Science Foundation of China(No.52275343)the Natural Science Foundation of Zhejiang Province(No.LY23E050003)+1 种基金Ningbo Youth Science and Technology Innovation Leading Talent Project(No.2023QL021)Smart Medicine and Engineering Interdisciplinary Innovation Project of Ningbo University(No.ZHYG001).
文摘Triply periodic minimal surface(TPMS)-based bone implants are an innovative approach in orthopedic implantology,offering customized solutions for bone defect repair and regeneration.This review comprehensively examines the current research landscape of TPMS-based bone implants,addressing key challenges and proposing future directions.It explores design strategies aimed at optimizing mechanical strength and enhancing biological integration,with a particular emphasis on TPMS structures.These design strategies include graded,hierarchical,and hybrid designs,each contributing to the overall functionality and performance of the implants.This review also highlights state-of-the-art fabrication technologies,particularly advancements in additive manufacturing(AM)techniques for creating metal-based,polymer-based,and ceramic-based bone implants.The ability to precisely control the architecture of TPMS structures using AM techniques is crucial for tailoring the mechanical and biological properties of such implants.Furthermore,this review critically evaluates the biological performance of TPMS implants,focusing on their potential to promote bone ingrowth and regeneration.Key factors,such as mechanical properties,permeability,and biocompatibility,are examined to determine the effectiveness of these implants in clinical applications.By synthesizing existing knowledge and proposing innovative research directions,this review underscores the transformative potential of TPMS-based bone implants in orthopedic surgery.The objective is to improve clinical outcomes and enhance patient care through advanced implant designs and manufacturing techniques.
基金supported in part by the Shandong Provincial Natural Science Foundation of China under Grant ZR2023ZD03 and ZR2024QF183in part by the Taishan Scholars Project Special Funds under Grant tsqn202312035.
文摘In current memristor-based neuromorphic computing research,several studies face the challenge of realizing only a single function at a time or having isolated functions.This limitation is particularly evident when simulating biological cognition,as the overall synergy between multiple cognitive functions is difficult to represent.In this work,a high-performance heterojunction memristor is presented at first.The memristor-based neural network and functional circuit are further implemented to realize and integrate multiple cognitive functions.Specifically,the proposed photoelectric memristor has the structure of Ag/ZnO-SnO_(2)/WO_(3-x)/ITO,it exhibits various synaptic behaviors under external modulations,which are characterized by good stability and repeatability.Based on this device,a neural network is built to realize the basic recognition function in biological cognition.The recognition results are translated into different labelled voltage signals and subsequently fed into a memristor-based functional circuit.By leveraging memory characteristics and tunable conductance of the memristor,and controlling the specific circuit functionalities,the input signals are processed to produce different outputs representing various cognitive functions.This methodology allows the realization and integration of recognition,memory,learning,association,relearning,and forgetting into one single system,thereby enabling a more comprehensive and authentic simulation of biological cognition.This work presents a novel memristor and a method for achieving and integrating multiple neuromorphic computing functions within a single system,providing a successful example for achieving complete biological function.
基金Supported by China Agriculture Research System(CARS-35)the Natural Science Foundation of Heilongjiang Province of China(LH2021C038)。
文摘Zearalenone(ZEN)is a non-steroidal estrogenic mycotoxin biosynthesized by the polyketide reaction,which has estrogenic effects and triggers toxic effects,such as reproductive toxicity,hepatotoxicity,genotoxicity,and immunotoxicity in organism.Due to its impact on human and animal health and the economic losses engendered by ZEN,detoxification strategies for contaminated foods and feeds to reduce or eliminate the toxic effects of ZEN by chemical,physical and biological methods are crucial.Detoxification by microbial means has broad application prospects,with the advantages of high efficiency,high specificity,mild conditions of action,no harmful metabolites,and safety.It may help to improve the function of intestinal barriers so that the intestinal epithelial barrier is more resistant to mycotoxins,and other pathogenic microorganisms.This article provided an overview of the metabolic pathways and animal toxicity of ZEN in organism,and summarized the effects of the current research status,detoxification mechanisms and in vivo applications of ZEN biodetoxification,in order to provide a reference for the prevention and control of ZEN.
文摘Depression is a severe mood disorder characterized by complex suicide mechanisms that involve a multitude of psychosocial and biological fac-tors.This paper presents a comprehensive analysis of the psychosocial factors influencing suicidal behavior in depression,including social support,life events,depressive symptoms,and personality traits,as well as biological factors such as brain-derived neurotrophic factor(BDNF),erotonin(5-TH)system dysfunction,and hypothalam-ic-pituitary-adrenal(HPA)axis abnormalities.Collectively,these factors significantly influence an individual’s risk of suicide,with biological factors serving as potential biomarkers for suicidal actions and psychosocial factors underscoring the impact of environmental and individual experiences.Understanding the interaction of these factors is crucial for comprehending and preventing suicidal behavior in depression.Despite considerable progress,current studies have limitations,particularly regarding the unclear interaction mechanisms between psychosocial and biological factors and a predominant focus on adult populations,with insufficient comprehensive studies on adolescents.