The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture.To better understand the development of biofertilizers from 1980 to 2022,we used bibliom...The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture.To better understand the development of biofertilizers from 1980 to 2022,we used bibliometric mining to analyze 12,880 journal articles related to biofertilizer.The network cooccurrence analysis suggested that the biofertilizers research can be separated into three stages.The first stage(1980-2005)focused on nitrogen fixation.The second stage(2006-2015)concentrated on the mechanisms for increasing plant yield.The third stage(2016-2022)was the application of biofertilizers to improve the soil environment.The keyword analysis revealed the mechanisms of biofertilizers to improve plant-growth:biofertilizers can impact the nutritional status of plants,regulate plant hormones,and improve soil environments and the microbiome.The bacteria use as biofertilizers,included Pseudomonas,Azospirillum,and Bacillus,were also identified through bibliometric mining.These findings provide critical discernment to aid further study of biofertilizers for sustainable agriculture.展开更多
Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardl...Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardly covers the needs of the population. To remedy this, growers systematically use mineral fertilizers. However, these fertilizers pollute the environment. To find an alternative to chemical fertilization and increase production, the effect of biofertilizers (Spaawet, Retone, Super Gro) compared with NPK mineral fertilizer was evaluated on Divo, Teriman, and Djonan F1 cultivars. The trial was set up in a factorial block design with three replications. Plant height, number of functional leaves, and crown diameter were assessed at 60 days after sowing (DAS). The time to 50% flowering, production time, and fruit yield were calculated. The results showed that the biofertilizer Retone induced the highest heights and number of functional leaves, with averages of 61.89 cm and 29.88 leaves, respectively. The diameter at the crown (17.77 mm) was highest with the NPK mineral fertilizer, and the shortest 50% flowering time, with an average of 47.61 days, was also obtained with the biofertilizer Retone. The NPK mineral fertilizer produced the longest production time, with an average of 35.25 days. The highest yields were obtained using Retone (11.07 t/ha) and NPK (9.52 t/ha) fertilizers. The “Divo<sub>*</sub>Retone” interaction produced the highest yield with an average of 12.19 t/ha. The biofertilizer Retone could therefore be used as an alternative fertilizer to chemical fertilization in okra crops, given its effect on the parameters assessed.展开更多
In this study, Aspergillus niger 1107 was isolated and identified as an efficient phosphate-solubilizing fungus (PSF). This strain generated 689 mg soluble P L-1 NBRIP medium after 10 d of culture. To produce an aff...In this study, Aspergillus niger 1107 was isolated and identified as an efficient phosphate-solubilizing fungus (PSF). This strain generated 689 mg soluble P L-1 NBRIP medium after 10 d of culture. To produce an affordable biofertilizer using A. niger 1107, the potential of widely available carrier materials for growth and maintenance of this strain were evaluated. The effects of sterilization procedures (autoclaving and gamma-ray irradiation) on the suitability of these carriers to maintain growth of the fungus were also investigated. The carrier materials were peat, corn cobs with 20% (w/w) perlite (CCP), wheat husks with 20% (w/w) perlite (WHP), and composted cattle manure with 20% (w/w) perlite (CCMP). In the first 5-6 mon of storage, the carriers sterilized by gamma-ray irradiation maintained higher inoculum loads than those in carriers sterilized by autoclaving. However, this effect was not detectable after 7 mon of storage. For the P-biofertilizer on WHP, more than 2.0× 10^7 viable spores of A. niger g-1 inoculant survived after 7 mon of storage. When this biofertilizer was applied to Chinese cabbage in a pot experiment, there were 5.6×10^6 spores of A. niger g-1 soil before plant harvesting. In the pot experiment, Chinese cabbage plants grown in soil treated with peat- and WHP-based P-biofertilizers showed significantly greater growth (P〈0.05) than that of plants grown in soil treated with free-cell biofertilizer or the CCMP-based biofertilizer. Also, the peat- and WHP-based P-biofertilizers increased the available P content in soil.展开更多
A field experiment was carried out to evaluate the feasibility of inoculating rice seedlings with biofertilizers(Azospirillum and Trichoderma) in order to reduce the use of chemical inorganic nitrogen(N)fertilizer on ...A field experiment was carried out to evaluate the feasibility of inoculating rice seedlings with biofertilizers(Azospirillum and Trichoderma) in order to reduce the use of chemical inorganic nitrogen(N)fertilizer on rice variety BU Dhan 1. The plant performances were better when 25% less inorganic N was applied with Trichoderma and combined application of Trichoderma and Azospirillum. Plants contained the highest chlorophyll concentrations when they were treated with 75% N + Trichoderma. Considering the yield attributes, 75% N + Trichoderma and 75% N + Trichoderma + Azospirillum performed similar to the control. The grain yield of rice was similar to the recommended dose even with 25% less N application. Application of Trichoderma resulted higher yield, followed by combined application with Azospirillum. Results revealed the greater scope of applying biofertilizer(Trichoderma) to supplement chemical N fertilizer with optimum yield of rice.展开更多
A field study was conducted at the Agricultural Research Farm of Razi University, Kermanshah, Iran to investigate the effects of phosphate biofertilizer, row spacing and plant density on corn yield and weed growth. Th...A field study was conducted at the Agricultural Research Farm of Razi University, Kermanshah, Iran to investigate the effects of phosphate biofertilizer, row spacing and plant density on corn yield and weed growth. The experiment was a factorial with three factors arranged in a randomized complete block design with three replications. The first factor was phosphate biofertilizer (inoculation and non-inoculation), the second was row spacing (conventional (75 cm) and reduced (50 cm)) and the third was plant density (66,666 plants·ha–1 (conventional plant density) 83,333 and 99,999 plants·ha–1 (1.25 and 1.5 times the conventional plant density, respectively)). Results indicated that corn yield and weed growth were significantly influenced by row spacing and plant density. So that, corn yield improved and weed biomass diminished in response to increasing plant density and decreasing row spacing. However, phosphate biofertilizer had no significant effect on corn yield, whereas, weed biomass was notably increased when phosphate biofertilizer was applied. Overall, this study revealed that both yield and weed control in corn field can be improved by alteration of the planting arrangement.展开更多
Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficien...Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin(p H 8.37–8.43) to evaluate the suppression effect of Trichoderma viride(T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer(T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer((CK), urea), while nonviable T. viride biofertilizer(TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater(SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea(AOA) and ammonium-oxidizing bacteria(AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.展开更多
In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to det...In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria.展开更多
Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biof...Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biofertilzers could meet this requirement. Biofertilizer is a natural organic fertilizer that helps to provide all the nutrients required by the plants and helps to increase the quality of the soil with a natural microorganism environment. This paper reviewed the types of biofertilzers, the biological basic of biofertilizers in plant growth promotion. This paper also assayed the bidirectional information exchange between plant-microbes in rhizoshpere and the signal pathway of plant growth- promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) in the course of plant infection. At last, the challenges of the application and the promising future of biofertilizers were also discussed.展开更多
Ginger yields in the NorthEastern region of India are low because the extremely poor farmers of the region can not afford to apply any chemical fertilizers and hence apply only the locally-available farmyard manures t...Ginger yields in the NorthEastern region of India are low because the extremely poor farmers of the region can not afford to apply any chemical fertilizers and hence apply only the locally-available farmyard manures to ginger fields. Biofertilizers may be a cheap source of fertilizers for ginger cultivation as they can increase nutrient availability and improve rhizome quality and are required in small quantity. An investigation was thus undertaken to study the effect of different biofenilizers on growth, productivity, quality and economics of organic ginger grown under rainfed condition in NorthEastern region of India. Seed treatment with biofertilizers enhanced growth, increased rhizome yield by 19.0% and resulted in 32.4% higher net profit over control. Among the seed treatments, Azotobacter 5.0 kg ha"l, Azospirillum 3.75 kg hal and Phosphotica 3.75 kg ha-1 were found optimum in improving most of the growth attributes, increasing yield components and yield of rhizome by 5.6%-13.5%. They also improved rhizome quality by increasing specific gravity, oleoresin and dry matter content and by decreasing crude fibre in rhizome. They resulted in higher net return by 4.0%-12.0% as compared to their other levels. Combined use of Azotobacter 5.0 kg hal along with Phosphotica 3.75 kg ha"l was found to be the best treatment combination which greatly improved growth and yield attributes of ginger and ultimately recorded markedly higher productivity (2.0%-23.5%) over other combinations. This treatment combination improved the quality of the produce and resulted in the highest gross return ($4,905 hal), net return ($3,525 hal) and return per dollar (3.55) invested in ginger cultivation. It appears that growing organic ginger by treating the seed rhizome with Azotobacter 5.0 kg ha-~ along with Phosphotica 3.75 kg ha-1 can result in good growth and high productivity of improved quality rhizome and ultimately result in maximum net profit and thus can be recommended for the NorthEastern region of India.展开更多
Biofertilizer can be defined as preparation that contains?microbes capable of?nitrogen (N)-fixation and phosphate solubilization that promote plant?growth. These groups?of microbes, classified as Plant Growth-Promotin...Biofertilizer can be defined as preparation that contains?microbes capable of?nitrogen (N)-fixation and phosphate solubilization that promote plant?growth. These groups?of microbes, classified as Plant Growth-Promoting Bacteria (PGPB), colonize the rhizosphere and the soil. In this work, liquid biofertilizer was produced from whole orange, banana and grape, wheat and rice chaff,?Moringa oleifera?leaves, soil, and brown sugar (as carbon source) mixed with water and cultured in an anaerobic condition for two weeks. The sieved culture was stored in a tightly sealed PVC container at room temperature for biochemical analysis of microbial population. Nitrogen fixing bacteria (Azotobacter?sp.) and phosphorus solubilizing bacteria were isolated using Ashby’s Mannitol Azotobacter medium and Pisvikoya’s PSB medium respectively, while?Bacillus sp. was isolated using Bacillus agar. Field experiment was carried out to investigate the performance rates of the biofertilizer against those of the Nitrogen/Phosphorus/Potassium (NPK) chemical fertilizer and the control, on the growth of corn (Zea mays). The experimental design consisted of three treatments of the Biofertilizer, Chemical fertilizer (NPK) and Control, conducted in three replicates. Data collected were analyzed using?one-way ANOVA at?P?< 0.05. The results showed significant improvement in growth and yield of maize on which biofertilizer was applied as against those treated with NPK and the Control. The plants treated with the biofertilizer did not show signs of insects attack, which were easily observed on the blades of those treated with NPK and the control.展开更多
Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that s...Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that seed treatment with biofertilizer increased biomass by 18.3%, enhanced N, P and K removal and improved short-term soil fertility status by increasing N and P balance and reducing negative K balance over control plots. Use of high dose (5.0 kg haL) of Azotobacter (a3) and medium dose (3.75 kg hal) of both Azospirillum (b2) and Phosphotica (c2) increased rhizome biomass by 6.8%-12.5% and shoot biomass by 5.6%-14.3% over other levels. They enhanced N, P and K removal by both rhizome and shoot when compared with other levels. The above biofertilizer treatments improved organic carbon and available N and P status of the soil by increasing N and P balance. The result showed overall strong negative K balance; but biofertilizer treatments greatly reduced the negative K balance in soil as compared to the control plots. Seed treatment with high level of Azotobacter along with medium level of Phosphotica (a3c2) produced the highest biomass yield (7.4 t hal), increased N and P balance and fertility status in spite of hizh N, P and K removal.展开更多
This study was carried out at the farm of Horticulture Department Faculty of Agriculture and forestry, Duhok University, during the winter season of 2008 to investigate the effects of biofertilizer (Azotobacter) wit...This study was carried out at the farm of Horticulture Department Faculty of Agriculture and forestry, Duhok University, during the winter season of 2008 to investigate the effects of biofertilizer (Azotobacter) with different levels of Nitrogen fertilizer (urea 46%) (100, 200, 300 kg/hectare) and without Azotobacter (Nitrogen alone) on growth, yield quantity and quality of lettuce Ramadi cv. The experiment was designed according to RCBD with three replicates. The results showed that there was significant increase in studied characteristics (plant height (cm), leaves number, length and of the stem (cm), head fresh and dry weight (g), head diameter and head yield (kg/m2)) except dry weight percentage of leaves and a significant decrease in NO3 in leaves by using Azotobacter with Urea especially at low levels.展开更多
The activity of various biofertilizers on rice production (Sabanero A95) was evaluated in Palizada, Campeche, Mexico, in the wet season of 2009 (year one) and 2011 (year two). On year one, arbuscular mycorrhiza INIFAP...The activity of various biofertilizers on rice production (Sabanero A95) was evaluated in Palizada, Campeche, Mexico, in the wet season of 2009 (year one) and 2011 (year two). On year one, arbuscular mycorrhiza INIFAP? (Rhizophagus intraradices), Azospirillum brasilense plus arbuscular micorrhiza Rhizophagus sp., and chemical fertilizer (92, -92, -60 kg·ha-1) were evaluated, while on year two marine algae extracts, a consortium of growth promoting bacteria (Pseudomonas spp.) and a control (not fertilized) were evaluated. The results showed that there were no significant differences on grain yield among treatments during the year one. The average grain yield was 2,800 kg·ha-1. As for the year two, the highest grain yield was observed on plots fertilized with chemical fertilizer (3333 kg·ha-1), followed by plots treated with mycorrhiza INIFAP? (3000 kg·ha-1). The economic analysis for rice production in both years showed that the use of arbuscular mycorrhiza decreases the cost of production by 18.5% and 16.3%, which suggests that microbial inoculants might be good substitutes of chemical fertilizers in rice production.展开更多
Black cumin (<em>Nigella sativa</em> L.) the highly aggregate valuable medicinal plant was field cultivated for two subsequent seasons (2018, 2019) designed as factorial split plot based on randomized comp...Black cumin (<em>Nigella sativa</em> L.) the highly aggregate valuable medicinal plant was field cultivated for two subsequent seasons (2018, 2019) designed as factorial split plot based on randomized complete block with 3 replications. The main factors 4 elicitors: salicylic acid, (SA) Nano-selenium (NPs), yeast (YS) chitosan (CH) and (E0), control. Whereas, the sub-main plot 4 biofertilizers, dray Moringa leaves extract, (MLE), neem dray leaves extract (NME), humic acid (HA) and traditional (NPK) chemical fertilizer as control. Allied statistical analysis of variance revealed that biotic and abiotic elicitors coincide biofertilizer and NPK chemical fertilizer actuated significant positive impacts, dray seed, seed fixed oil, seed essential oil yield production. Also, significantly amelioration bioactive major fatty acids content of seed fixed oil (linolenic > carvone) dihydrolenoleic > oleic) as well as major terpens content of seed essential oil (P-cymene > thnymoquione > Penine). Consequently, multi-repeating elicitation cod be considered reliable strategy achieve sustainable development for <em>N-sativa</em> under, biotic elicitor coincide biofertilizers that excel abiotic elicitors coincide biofertilizer which excel biotic or abiotic elicitors coincide NPK traditional chemical fertilizer.展开更多
Establishing reliable technological information on the safety of biofertilizers produced from a bioreactor composting technique is a must prior to its commercialization. A phytotoxicity study of biofertilizer made fro...Establishing reliable technological information on the safety of biofertilizers produced from a bioreactor composting technique is a must prior to its commercialization. A phytotoxicity study of biofertilizer made from the bioreactor composting technology at Aklan State University, Banga, Aklan, Philippines was conducted for fourteen (14) days using commercially available lettuce seeds (Lactuca sativa L.). Standard phytotoxicity attributes such as hypocotyl length, radicle length, relative germination percentage, and relative radicle growth observed during the germination stage were evaluated. Results revealed no significant difference in the radicle lengths of the germinated lettuce seeds as affected by the varying levels of biofertilizer dilution at H(3) = 10.567, p = 0.061 > 0.05. On the other hand, the hypocotyl length of the lettuce showed significant differences in response to varying levels of biofertilizer dilution with Welch’s F(5, 5.163) = 8.175, p = 0.017 < 0.05. Also, the different levels of biofertilizer affected significantly the germination percentage of lettuce seeds F(5, 12) = 5.822, p = 0.006 < 0.05. All levels of biofertilizer treatments indicated a decrease in relative germination percentage. However, those seeds applied with 10% biofertilizer have the highest reduction of germination percentage, equivalent to 86.9% (RGP = 13.10%). All levels of biofertilizer showed an increase in radicle growth in contrast to the negative control plant except for the one given a 10% level of biofertilizer. Seeds that received 10% biofertilizer showed an extremely high reduction in radicle growth, equivalent to 72.22% (RRG = 27.78%). The study shows that applying low levels of the bioreactor-produced biofertilizer will observably reduce the measure of the germination characteristics of lettuce seeds, but not necessarily low enough to be considered phytotoxic. However, the application of at least 10% bioreactor-produced biofertilizer can presumptively lead to phytotoxicity.展开更多
As part of the promotion of common bean cultivation, fertilization methods will have to be proposed to growers. The aim of this study is therefore to develop a technical itinerary for dry bean fertilization. To this e...As part of the promotion of common bean cultivation, fertilization methods will have to be proposed to growers. The aim of this study is therefore to develop a technical itinerary for dry bean fertilization. To this end, different types of chemical and organic fertilizers were evaluated on three dry bean varieties (HARI25/GHA19, HARI35/GHA19 and HARI36/GUI21). Seven (7) doses of chemical and organic fertilizers were used, including two controls (D0 with no fertilizer and D1, the reference dose using NPK base and cover fertilizers in the form of urea). The fertilization trial was set up as a Split-Plot design, with variety as the primary factor and dose as the secondary factor. The experiment was repeated three (3) times. The results showed that vegetative development parameters and fruit set rate varied according to the variety studied. For yield and its components, the treatments had a significant effect. Indeed, the response of varieties to fertilizers was specific. For each variety used, the optimum yield was obtained with a different treatment, thus highlighting the genotype effect of the dry bean varieties studied. Among the treatments tested, D4 (5 t organic fertilizer/ha) performed best in all three varieties, generating yield increases of 20%, 46% and 91% respectively.展开更多
Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers ha...Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.展开更多
Plant biofertilization involves introducing compounds containing living mi-croorganisms into the coating medium to sustainably enhance plant production and soil health. This is a complex process that undergoes multipl...Plant biofertilization involves introducing compounds containing living mi-croorganisms into the coating medium to sustainably enhance plant production and soil health. This is a complex process that undergoes multiple stages of development before yielding a final product. The final biofertilizer is used by legumes-protein-rich crops in symbiosis with rhizobia to enable biological nitrogen fixation increasing natural soil fertility. This study aims to determine the optimal formulation of a rhizobial biofertilizer to improve the performance of soybean (Glycine max L. cv. Docko). To this end, soybean seeds obtained from IRAD were coated with different formulations derived from locally sourced materials. Palm kernel oil was used as an adhesive in one group, while corn powder served as an adhesive in another. The coated seeds were then sown in the field. The results indicate that the combination of pigeon pea powder + sugarcane molasses, with palm kernel oil as an adhesive, produced the best nodulation (nitrogen fixation). This formulation also led to significant improvements in growth (+350%) and total nitrogen content (+1100%) compared to the bacterial broth inoculum control (B0) (P ≤ 0.01). These findings represent a significant advancement in improving nitrogen-fixing bacterial inoculants and enhancing soil fertility for the sustainable cultivation of soybeans in this tropical soil.展开更多
The edible mushroom Agaricus bisporus L.plays a crucial ecological role in nutrient cycling and organic matter decomposition,alongside its increasing importance in the food and nutrition industry.This study explored e...The edible mushroom Agaricus bisporus L.plays a crucial ecological role in nutrient cycling and organic matter decomposition,alongside its increasing importance in the food and nutrition industry.This study explored ecological interventions to enhance the mushroom’s vitamin content by enriching its cultivation substrate with nanomaterials and biostimulatory agents.The experiment was conducted within the mushroom production project at Al-Qadisiyah Governorate,Iraq.The compost-based medium was amended with magnetic iron nanoparticles(N-FeO),carbon nanotube(CNT)suspensions,EM biofertilizer,and Atonik growth stimulant.Their ecological impact on the enrichment of fat-soluble(A,D,E)and water-soluble(B2,B3,B5,B6)vitamins in mushrooms was assessed.The study employed a Completely Randomized Design(CRD)with three replicates.Results revealed that the synergistic application of these eco-friendly treatments significantly enhanced the vitamin profiles of A.bisporus.The highest concentrations of vitamins B2 and B5(5.16 and 17.70 mg kg^(-1),respectively)and vitamin A(6.87 IU ml^(-1))were recorded under the combined quadruple treatment.Additionally,the triple treatment(N-FeO+EM+Atonik)notably increased levels of vitamins B2(4.47 mg kg^(-1)),B6(25.66 mg kg^(-1)),D(34.76 mg kg^(-1)),and vitamin A(6.87 IU ml^(-1)).Dual treatments(EM+Atonik)also significantly improved vitamin B2(4.54 mg kg^(-1))and vitamin E(3.30 mg kg^(-1))contents.These findings demonstrate that integrating nanomaterials and biostimulants can serve as an ecological strategy to improve the nutritional quality of mushrooms while promoting sustainable agricultural practices.展开更多
Global warming and climate change have made food production through conventional agriculture inefficient, and their effects on livestock and crop cultivation are leading to disruptions in the food supply. The troubles...Global warming and climate change have made food production through conventional agriculture inefficient, and their effects on livestock and crop cultivation are leading to disruptions in the food supply. The troubles are severe in regions suffering from improper land management and unsustainable practices. The Bio-CircularGreen(BCG) economic model, designed to reduce and recycle resources by using environmentally friendly procedures, has been developed. The Azolla plant represents an interesting model for BCG and for enhancing community networks in Southeast Asia(SEA) because it provides multipurpose materials. Azolla can be used for various applications in agriculture such as biofertilizer and animal feed. However, our understanding and utilization of Azolla are limited. Moreover, collaboration among farmers is insufficient to maximize the benefits of Azolla. In this study, we provide a comprehensive review of the role of Azolla in agriculture. We review the main properties of Azolla as biofertilizers, especially regarding rice production and the interaction with cyanobacteria. For livestock, we discuss procedures to use Azolla in animal feed and evaluate the ingredients of the meal. In addition, we discuss product qualities from livestock treated with Azolla in the diet. This review also describes Azolla-based farming, which is designed for efficient land use and promotes nutrient cycling.Hence, we show that the Azolla plant is one of the key factors for farm-based agroecosystem services which can drive sustainable bioresource management in SEA. Moreover, we also propose the potential development of Azolla to improve its properties as a biofertilizer, a functional feed for animals and humans, and a feedstock for bio-oil production.展开更多
基金funded by the Key R&D Projects in Zhejiang Province(Grant No.2020C02001)Sannong Jiufang S&T Project in Zhejiang Province(Grant No.2022SNJF024)+3 种基金Key innovation Project of Qilu University of Technology(Shandong Academy of Sciences)(Grant No.2022JBZ01-06)Natural Science Foundation of Shandong Province(Grant No.ZR2021 KE038)Shandong Province Agricultural Major Application Technology Innovation Project(Grant No.20182130106)Foundation of Qilu University of Technology of Cultivating Subject for Biology and Biochemistry(Grant No.202119)
文摘The application of biofertilizers is becoming an inevitable trend to substitute chemical fertilizers for sustainable agriculture.To better understand the development of biofertilizers from 1980 to 2022,we used bibliometric mining to analyze 12,880 journal articles related to biofertilizer.The network cooccurrence analysis suggested that the biofertilizers research can be separated into three stages.The first stage(1980-2005)focused on nitrogen fixation.The second stage(2006-2015)concentrated on the mechanisms for increasing plant yield.The third stage(2016-2022)was the application of biofertilizers to improve the soil environment.The keyword analysis revealed the mechanisms of biofertilizers to improve plant-growth:biofertilizers can impact the nutritional status of plants,regulate plant hormones,and improve soil environments and the microbiome.The bacteria use as biofertilizers,included Pseudomonas,Azospirillum,and Bacillus,were also identified through bibliometric mining.These findings provide critical discernment to aid further study of biofertilizers for sustainable agriculture.
文摘Okra (Abelmoschus esculentus L.) is an herbaceous plant of the Malvaceae family. In Côte d’Ivoire, okra production is estimated to be over 193,000 tons. This low production is largely due to poor soils and hardly covers the needs of the population. To remedy this, growers systematically use mineral fertilizers. However, these fertilizers pollute the environment. To find an alternative to chemical fertilization and increase production, the effect of biofertilizers (Spaawet, Retone, Super Gro) compared with NPK mineral fertilizer was evaluated on Divo, Teriman, and Djonan F1 cultivars. The trial was set up in a factorial block design with three replications. Plant height, number of functional leaves, and crown diameter were assessed at 60 days after sowing (DAS). The time to 50% flowering, production time, and fruit yield were calculated. The results showed that the biofertilizer Retone induced the highest heights and number of functional leaves, with averages of 61.89 cm and 29.88 leaves, respectively. The diameter at the crown (17.77 mm) was highest with the NPK mineral fertilizer, and the shortest 50% flowering time, with an average of 47.61 days, was also obtained with the biofertilizer Retone. The NPK mineral fertilizer produced the longest production time, with an average of 35.25 days. The highest yields were obtained using Retone (11.07 t/ha) and NPK (9.52 t/ha) fertilizers. The “Divo<sub>*</sub>Retone” interaction produced the highest yield with an average of 12.19 t/ha. The biofertilizer Retone could therefore be used as an alternative fertilizer to chemical fertilization in okra crops, given its effect on the parameters assessed.
基金financially supported by the Special Fund for Agro-Scientific Research in the Public Interest, China (201003014)the Central Public-Interest ScientificInstitution Basal Research Fund, China (202-27)
文摘In this study, Aspergillus niger 1107 was isolated and identified as an efficient phosphate-solubilizing fungus (PSF). This strain generated 689 mg soluble P L-1 NBRIP medium after 10 d of culture. To produce an affordable biofertilizer using A. niger 1107, the potential of widely available carrier materials for growth and maintenance of this strain were evaluated. The effects of sterilization procedures (autoclaving and gamma-ray irradiation) on the suitability of these carriers to maintain growth of the fungus were also investigated. The carrier materials were peat, corn cobs with 20% (w/w) perlite (CCP), wheat husks with 20% (w/w) perlite (WHP), and composted cattle manure with 20% (w/w) perlite (CCMP). In the first 5-6 mon of storage, the carriers sterilized by gamma-ray irradiation maintained higher inoculum loads than those in carriers sterilized by autoclaving. However, this effect was not detectable after 7 mon of storage. For the P-biofertilizer on WHP, more than 2.0× 10^7 viable spores of A. niger g-1 inoculant survived after 7 mon of storage. When this biofertilizer was applied to Chinese cabbage in a pot experiment, there were 5.6×10^6 spores of A. niger g-1 soil before plant harvesting. In the pot experiment, Chinese cabbage plants grown in soil treated with peat- and WHP-based P-biofertilizers showed significantly greater growth (P〈0.05) than that of plants grown in soil treated with free-cell biofertilizer or the CCMP-based biofertilizer. Also, the peat- and WHP-based P-biofertilizers increased the available P content in soil.
基金Financial support was delivered by Research Management Cell of Bangabandhu Sheikh Mujibur Rahman Agricultural University(BSMRAU)
文摘A field experiment was carried out to evaluate the feasibility of inoculating rice seedlings with biofertilizers(Azospirillum and Trichoderma) in order to reduce the use of chemical inorganic nitrogen(N)fertilizer on rice variety BU Dhan 1. The plant performances were better when 25% less inorganic N was applied with Trichoderma and combined application of Trichoderma and Azospirillum. Plants contained the highest chlorophyll concentrations when they were treated with 75% N + Trichoderma. Considering the yield attributes, 75% N + Trichoderma and 75% N + Trichoderma + Azospirillum performed similar to the control. The grain yield of rice was similar to the recommended dose even with 25% less N application. Application of Trichoderma resulted higher yield, followed by combined application with Azospirillum. Results revealed the greater scope of applying biofertilizer(Trichoderma) to supplement chemical N fertilizer with optimum yield of rice.
文摘A field study was conducted at the Agricultural Research Farm of Razi University, Kermanshah, Iran to investigate the effects of phosphate biofertilizer, row spacing and plant density on corn yield and weed growth. The experiment was a factorial with three factors arranged in a randomized complete block design with three replications. The first factor was phosphate biofertilizer (inoculation and non-inoculation), the second was row spacing (conventional (75 cm) and reduced (50 cm)) and the third was plant density (66,666 plants·ha–1 (conventional plant density) 83,333 and 99,999 plants·ha–1 (1.25 and 1.5 times the conventional plant density, respectively)). Results indicated that corn yield and weed growth were significantly influenced by row spacing and plant density. So that, corn yield improved and weed biomass diminished in response to increasing plant density and decreasing row spacing. However, phosphate biofertilizer had no significant effect on corn yield, whereas, weed biomass was notably increased when phosphate biofertilizer was applied. Overall, this study revealed that both yield and weed control in corn field can be improved by alteration of the planting arrangement.
基金supported by the National Science Fund Projects (Nos. 41371266 and 31670507)Innovation in Cross-functional Team Program of the Chinese Academy of Sciences (No. 2015)+1 种基金the Key Research Program of Chinese Academy of Sciences (No. ZDRW-ZS-2016-5)the Key State Science and Technology Program of China (No. 2015ZX07206-006)
文摘Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin(p H 8.37–8.43) to evaluate the suppression effect of Trichoderma viride(T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer(T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer((CK), urea), while nonviable T. viride biofertilizer(TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater(SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea(AOA) and ammonium-oxidizing bacteria(AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.
文摘In the present study, a biofertilizer on the basis of Streptomyces fumanus gn-2 was used for the treatment of wheat and soybean seeds (dose 104 spore/ml) before planting them in soil with low fertility in order to determine the effect of this biological agent on germination rate;the growth of seedlings, shoots, and the maturation phase of plants;the rhizosphere’s functional biodiversity;and the resistance of these plants to pathogens. Seeds were soaked in the suspension for a period of two or three hours. During the growing season of the crop, no additional fertilizing and spraying of a biopesticide against diseases or pests occurred. Despite the soil having low fertility, low quantities of organic matter, and not having been before used for the cultivation of agricultural plants, this biofertilizer showed a strong stimulatory effect on the growth of seeds and seedlings of wheat and soybeans. The average germination and seed vigor increased by 1.5 - 2.0 times, and the phenophases were accelerated to three to five days. In all phases of vegetation, the ammonifying bacteria in the presence of an antagonist (a biological agent) developed rapidly and were constantly present in significant numbers in the rhizosphere. Streptomyces fumanus introduced into non-sterile soil entered into competition with the local soil microflora and had the ability to colonize the rhizosphere system of plants. The use of a formulation of Streptomyces gn-2 has improved the composition of rhizosphere microflora, attracting saprophytic microorganisms: ammonificators and oligotrophs. The presence of the biocontrol microorganism Streptomyces fumanus in the rhizosphere plays an important role in enhancing the growth and development of useful groups, such as nitrogen-fixing bacteria.
文摘Modern agriculture is facing new challenges in which ecological and molecular approaches are being integrated to achieve higher crop yields while minimizing negative impacts on the environment. The application of biofertilzers could meet this requirement. Biofertilizer is a natural organic fertilizer that helps to provide all the nutrients required by the plants and helps to increase the quality of the soil with a natural microorganism environment. This paper reviewed the types of biofertilzers, the biological basic of biofertilizers in plant growth promotion. This paper also assayed the bidirectional information exchange between plant-microbes in rhizoshpere and the signal pathway of plant growth- promoting rhizobacteria (PGPR) and plant growth-promoting fungi (PGPF) in the course of plant infection. At last, the challenges of the application and the promising future of biofertilizers were also discussed.
文摘Ginger yields in the NorthEastern region of India are low because the extremely poor farmers of the region can not afford to apply any chemical fertilizers and hence apply only the locally-available farmyard manures to ginger fields. Biofertilizers may be a cheap source of fertilizers for ginger cultivation as they can increase nutrient availability and improve rhizome quality and are required in small quantity. An investigation was thus undertaken to study the effect of different biofenilizers on growth, productivity, quality and economics of organic ginger grown under rainfed condition in NorthEastern region of India. Seed treatment with biofertilizers enhanced growth, increased rhizome yield by 19.0% and resulted in 32.4% higher net profit over control. Among the seed treatments, Azotobacter 5.0 kg ha"l, Azospirillum 3.75 kg hal and Phosphotica 3.75 kg ha-1 were found optimum in improving most of the growth attributes, increasing yield components and yield of rhizome by 5.6%-13.5%. They also improved rhizome quality by increasing specific gravity, oleoresin and dry matter content and by decreasing crude fibre in rhizome. They resulted in higher net return by 4.0%-12.0% as compared to their other levels. Combined use of Azotobacter 5.0 kg hal along with Phosphotica 3.75 kg ha"l was found to be the best treatment combination which greatly improved growth and yield attributes of ginger and ultimately recorded markedly higher productivity (2.0%-23.5%) over other combinations. This treatment combination improved the quality of the produce and resulted in the highest gross return ($4,905 hal), net return ($3,525 hal) and return per dollar (3.55) invested in ginger cultivation. It appears that growing organic ginger by treating the seed rhizome with Azotobacter 5.0 kg ha-~ along with Phosphotica 3.75 kg ha-1 can result in good growth and high productivity of improved quality rhizome and ultimately result in maximum net profit and thus can be recommended for the NorthEastern region of India.
文摘Biofertilizer can be defined as preparation that contains?microbes capable of?nitrogen (N)-fixation and phosphate solubilization that promote plant?growth. These groups?of microbes, classified as Plant Growth-Promoting Bacteria (PGPB), colonize the rhizosphere and the soil. In this work, liquid biofertilizer was produced from whole orange, banana and grape, wheat and rice chaff,?Moringa oleifera?leaves, soil, and brown sugar (as carbon source) mixed with water and cultured in an anaerobic condition for two weeks. The sieved culture was stored in a tightly sealed PVC container at room temperature for biochemical analysis of microbial population. Nitrogen fixing bacteria (Azotobacter?sp.) and phosphorus solubilizing bacteria were isolated using Ashby’s Mannitol Azotobacter medium and Pisvikoya’s PSB medium respectively, while?Bacillus sp. was isolated using Bacillus agar. Field experiment was carried out to investigate the performance rates of the biofertilizer against those of the Nitrogen/Phosphorus/Potassium (NPK) chemical fertilizer and the control, on the growth of corn (Zea mays). The experimental design consisted of three treatments of the Biofertilizer, Chemical fertilizer (NPK) and Control, conducted in three replicates. Data collected were analyzed using?one-way ANOVA at?P?< 0.05. The results showed significant improvement in growth and yield of maize on which biofertilizer was applied as against those treated with NPK and the Control. The plants treated with the biofertilizer did not show signs of insects attack, which were easily observed on the blades of those treated with NPK and the control.
文摘Farmers of North-Eastern India grow ginger organically and obtain low yield. Biofertilizer may help in increasing yield and maintaining soil fertility. An investigation made with different biofertilizers showed that seed treatment with biofertilizer increased biomass by 18.3%, enhanced N, P and K removal and improved short-term soil fertility status by increasing N and P balance and reducing negative K balance over control plots. Use of high dose (5.0 kg haL) of Azotobacter (a3) and medium dose (3.75 kg hal) of both Azospirillum (b2) and Phosphotica (c2) increased rhizome biomass by 6.8%-12.5% and shoot biomass by 5.6%-14.3% over other levels. They enhanced N, P and K removal by both rhizome and shoot when compared with other levels. The above biofertilizer treatments improved organic carbon and available N and P status of the soil by increasing N and P balance. The result showed overall strong negative K balance; but biofertilizer treatments greatly reduced the negative K balance in soil as compared to the control plots. Seed treatment with high level of Azotobacter along with medium level of Phosphotica (a3c2) produced the highest biomass yield (7.4 t hal), increased N and P balance and fertility status in spite of hizh N, P and K removal.
文摘This study was carried out at the farm of Horticulture Department Faculty of Agriculture and forestry, Duhok University, during the winter season of 2008 to investigate the effects of biofertilizer (Azotobacter) with different levels of Nitrogen fertilizer (urea 46%) (100, 200, 300 kg/hectare) and without Azotobacter (Nitrogen alone) on growth, yield quantity and quality of lettuce Ramadi cv. The experiment was designed according to RCBD with three replicates. The results showed that there was significant increase in studied characteristics (plant height (cm), leaves number, length and of the stem (cm), head fresh and dry weight (g), head diameter and head yield (kg/m2)) except dry weight percentage of leaves and a significant decrease in NO3 in leaves by using Azotobacter with Urea especially at low levels.
文摘The activity of various biofertilizers on rice production (Sabanero A95) was evaluated in Palizada, Campeche, Mexico, in the wet season of 2009 (year one) and 2011 (year two). On year one, arbuscular mycorrhiza INIFAP? (Rhizophagus intraradices), Azospirillum brasilense plus arbuscular micorrhiza Rhizophagus sp., and chemical fertilizer (92, -92, -60 kg·ha-1) were evaluated, while on year two marine algae extracts, a consortium of growth promoting bacteria (Pseudomonas spp.) and a control (not fertilized) were evaluated. The results showed that there were no significant differences on grain yield among treatments during the year one. The average grain yield was 2,800 kg·ha-1. As for the year two, the highest grain yield was observed on plots fertilized with chemical fertilizer (3333 kg·ha-1), followed by plots treated with mycorrhiza INIFAP? (3000 kg·ha-1). The economic analysis for rice production in both years showed that the use of arbuscular mycorrhiza decreases the cost of production by 18.5% and 16.3%, which suggests that microbial inoculants might be good substitutes of chemical fertilizers in rice production.
文摘Black cumin (<em>Nigella sativa</em> L.) the highly aggregate valuable medicinal plant was field cultivated for two subsequent seasons (2018, 2019) designed as factorial split plot based on randomized complete block with 3 replications. The main factors 4 elicitors: salicylic acid, (SA) Nano-selenium (NPs), yeast (YS) chitosan (CH) and (E0), control. Whereas, the sub-main plot 4 biofertilizers, dray Moringa leaves extract, (MLE), neem dray leaves extract (NME), humic acid (HA) and traditional (NPK) chemical fertilizer as control. Allied statistical analysis of variance revealed that biotic and abiotic elicitors coincide biofertilizer and NPK chemical fertilizer actuated significant positive impacts, dray seed, seed fixed oil, seed essential oil yield production. Also, significantly amelioration bioactive major fatty acids content of seed fixed oil (linolenic > carvone) dihydrolenoleic > oleic) as well as major terpens content of seed essential oil (P-cymene > thnymoquione > Penine). Consequently, multi-repeating elicitation cod be considered reliable strategy achieve sustainable development for <em>N-sativa</em> under, biotic elicitor coincide biofertilizers that excel abiotic elicitors coincide biofertilizer which excel biotic or abiotic elicitors coincide NPK traditional chemical fertilizer.
文摘Establishing reliable technological information on the safety of biofertilizers produced from a bioreactor composting technique is a must prior to its commercialization. A phytotoxicity study of biofertilizer made from the bioreactor composting technology at Aklan State University, Banga, Aklan, Philippines was conducted for fourteen (14) days using commercially available lettuce seeds (Lactuca sativa L.). Standard phytotoxicity attributes such as hypocotyl length, radicle length, relative germination percentage, and relative radicle growth observed during the germination stage were evaluated. Results revealed no significant difference in the radicle lengths of the germinated lettuce seeds as affected by the varying levels of biofertilizer dilution at H(3) = 10.567, p = 0.061 > 0.05. On the other hand, the hypocotyl length of the lettuce showed significant differences in response to varying levels of biofertilizer dilution with Welch’s F(5, 5.163) = 8.175, p = 0.017 < 0.05. Also, the different levels of biofertilizer affected significantly the germination percentage of lettuce seeds F(5, 12) = 5.822, p = 0.006 < 0.05. All levels of biofertilizer treatments indicated a decrease in relative germination percentage. However, those seeds applied with 10% biofertilizer have the highest reduction of germination percentage, equivalent to 86.9% (RGP = 13.10%). All levels of biofertilizer showed an increase in radicle growth in contrast to the negative control plant except for the one given a 10% level of biofertilizer. Seeds that received 10% biofertilizer showed an extremely high reduction in radicle growth, equivalent to 72.22% (RRG = 27.78%). The study shows that applying low levels of the bioreactor-produced biofertilizer will observably reduce the measure of the germination characteristics of lettuce seeds, but not necessarily low enough to be considered phytotoxic. However, the application of at least 10% bioreactor-produced biofertilizer can presumptively lead to phytotoxicity.
文摘As part of the promotion of common bean cultivation, fertilization methods will have to be proposed to growers. The aim of this study is therefore to develop a technical itinerary for dry bean fertilization. To this end, different types of chemical and organic fertilizers were evaluated on three dry bean varieties (HARI25/GHA19, HARI35/GHA19 and HARI36/GUI21). Seven (7) doses of chemical and organic fertilizers were used, including two controls (D0 with no fertilizer and D1, the reference dose using NPK base and cover fertilizers in the form of urea). The fertilization trial was set up as a Split-Plot design, with variety as the primary factor and dose as the secondary factor. The experiment was repeated three (3) times. The results showed that vegetative development parameters and fruit set rate varied according to the variety studied. For yield and its components, the treatments had a significant effect. Indeed, the response of varieties to fertilizers was specific. For each variety used, the optimum yield was obtained with a different treatment, thus highlighting the genotype effect of the dry bean varieties studied. Among the treatments tested, D4 (5 t organic fertilizer/ha) performed best in all three varieties, generating yield increases of 20%, 46% and 91% respectively.
基金financed by the Spanish Ministry of Science and Innovation and the European Regional Development Fund(ERDF)(No.PID20211234690BI00)the European Joint Program EJP_Soil(TRACE-Soils)(No.862695)+1 种基金the Spanish Ministry of Science and Innovation(RED2018-102624TMCIN/AEI/10.13039/501100011033)the Project PREPSOIL European Union(No.101070045,HORIZON CSA)。
文摘Whilst phosphorus(P)in soil is considered to be abundant,the portion available for plant uptake constitutes less than 1%of the overall P present.To enhance crop productivity,the utilization of mineral P fertilizers has become pervasive in agriculture.Nonetheless,the escalating prices of chemical fertilizers,coupled with new European regulations prohibiting the use of P fertilizers containing cadmium,have highlighted the urgency to identify environmentally friendly products and practices for P fertilization in agricultural soils.This comprehensive review delves into the current landscape of P fertilization from agricultural,political,and economic standpoints.We recognize the potential of microbes in mobilizing P,but emphasize the necessity for more robust research to establish their effectiveness in promoting plant P uptake under real-world conditions.Additionally,we explore the role of agricultural conservation practices,such as optimal tillage,diversified cropping systems,and increased organic carbon input,in conserving P.Furthermore,this review contemplates forthcoming innovations in research.These innovations encompass the development of enhanced formulations for biofertilizers and the undertaking of more comprehensive studies within the realm of conservation agriculture.All these endeavors collectively hold the potential to augment P accessibility to plants in a sustainable manner,thereby advancing agricultural sustainability and productivity.
文摘Plant biofertilization involves introducing compounds containing living mi-croorganisms into the coating medium to sustainably enhance plant production and soil health. This is a complex process that undergoes multiple stages of development before yielding a final product. The final biofertilizer is used by legumes-protein-rich crops in symbiosis with rhizobia to enable biological nitrogen fixation increasing natural soil fertility. This study aims to determine the optimal formulation of a rhizobial biofertilizer to improve the performance of soybean (Glycine max L. cv. Docko). To this end, soybean seeds obtained from IRAD were coated with different formulations derived from locally sourced materials. Palm kernel oil was used as an adhesive in one group, while corn powder served as an adhesive in another. The coated seeds were then sown in the field. The results indicate that the combination of pigeon pea powder + sugarcane molasses, with palm kernel oil as an adhesive, produced the best nodulation (nitrogen fixation). This formulation also led to significant improvements in growth (+350%) and total nitrogen content (+1100%) compared to the bacterial broth inoculum control (B0) (P ≤ 0.01). These findings represent a significant advancement in improving nitrogen-fixing bacterial inoculants and enhancing soil fertility for the sustainable cultivation of soybeans in this tropical soil.
文摘The edible mushroom Agaricus bisporus L.plays a crucial ecological role in nutrient cycling and organic matter decomposition,alongside its increasing importance in the food and nutrition industry.This study explored ecological interventions to enhance the mushroom’s vitamin content by enriching its cultivation substrate with nanomaterials and biostimulatory agents.The experiment was conducted within the mushroom production project at Al-Qadisiyah Governorate,Iraq.The compost-based medium was amended with magnetic iron nanoparticles(N-FeO),carbon nanotube(CNT)suspensions,EM biofertilizer,and Atonik growth stimulant.Their ecological impact on the enrichment of fat-soluble(A,D,E)and water-soluble(B2,B3,B5,B6)vitamins in mushrooms was assessed.The study employed a Completely Randomized Design(CRD)with three replicates.Results revealed that the synergistic application of these eco-friendly treatments significantly enhanced the vitamin profiles of A.bisporus.The highest concentrations of vitamins B2 and B5(5.16 and 17.70 mg kg^(-1),respectively)and vitamin A(6.87 IU ml^(-1))were recorded under the combined quadruple treatment.Additionally,the triple treatment(N-FeO+EM+Atonik)notably increased levels of vitamins B2(4.47 mg kg^(-1)),B6(25.66 mg kg^(-1)),D(34.76 mg kg^(-1)),and vitamin A(6.87 IU ml^(-1)).Dual treatments(EM+Atonik)also significantly improved vitamin B2(4.54 mg kg^(-1))and vitamin E(3.30 mg kg^(-1))contents.These findings demonstrate that integrating nanomaterials and biostimulants can serve as an ecological strategy to improve the nutritional quality of mushrooms while promoting sustainable agricultural practices.
基金Mahidol University for the support of a “Scholarship for PhD Student”, Thailandthe the cooperation with the National Science and Technology Development Agency and Mahidol University of “the Scholarship for the Development of High Quality Research Graduates in Science and Technology Project”, Thailand。
文摘Global warming and climate change have made food production through conventional agriculture inefficient, and their effects on livestock and crop cultivation are leading to disruptions in the food supply. The troubles are severe in regions suffering from improper land management and unsustainable practices. The Bio-CircularGreen(BCG) economic model, designed to reduce and recycle resources by using environmentally friendly procedures, has been developed. The Azolla plant represents an interesting model for BCG and for enhancing community networks in Southeast Asia(SEA) because it provides multipurpose materials. Azolla can be used for various applications in agriculture such as biofertilizer and animal feed. However, our understanding and utilization of Azolla are limited. Moreover, collaboration among farmers is insufficient to maximize the benefits of Azolla. In this study, we provide a comprehensive review of the role of Azolla in agriculture. We review the main properties of Azolla as biofertilizers, especially regarding rice production and the interaction with cyanobacteria. For livestock, we discuss procedures to use Azolla in animal feed and evaluate the ingredients of the meal. In addition, we discuss product qualities from livestock treated with Azolla in the diet. This review also describes Azolla-based farming, which is designed for efficient land use and promotes nutrient cycling.Hence, we show that the Azolla plant is one of the key factors for farm-based agroecosystem services which can drive sustainable bioresource management in SEA. Moreover, we also propose the potential development of Azolla to improve its properties as a biofertilizer, a functional feed for animals and humans, and a feedstock for bio-oil production.