Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BM...Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BMSCs)in promoting nerve regeneration,revealing broad prospects for BMSCs trans-plantation in alleviating PNI.We confirmed the fact that BMSCs significantly alleviate PNI,but there are shortcomings such as low cell survival rate and immune rejection,which limit the wide application of BMSCs.BMSCs-derived exosomes(Exos)are considered as a promising cell-free nanomedicine for PNI,avoiding the ethical issues of BMSCs.Exos in combination with bioengineering therapeutics(including extracellular matrix,hydrogel)brings new hope for PNI,provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile,significantly increases ex-pression of neurotrophic factors,promotes axonal and myelin regeneration,and demonstrates a strong potential to enhance neurogenesis.Therefore,engineered Exos exhibit better properties,such as stronger targeting and more beneficial components.This article briefly describes the role of nanotechnology and bioe-ngineering therapies for BMSCs in PNI,proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.展开更多
The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed ...The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed that while employment placement rates for bioengineering graduates remain stable,starting salaries exhibit limited growth and career trajectories lack clarity.These challenges originate from a curriculum lagging behind technological progress,inadequate practical training,and a mismatch between student competencies and industry expectations.To address these issues,this paper proposed a strategic framework grounded in"demand-driven design,industry-education integration,and competence-centered development".Key strategies include dynamic curriculum renewal,collaborative university-industry training,holistic competency development,and personalized student support,which collectively aim at enhancing graduates employment competitiveness and long-term professional sustainability.展开更多
Gulf War Illness(GWI)is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms.Among these gastrointestinal symptoms,motility disorders are highly prevalent,presenting as chronic...Gulf War Illness(GWI)is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms.Among these gastrointestinal symptoms,motility disorders are highly prevalent,presenting as chronic constipation,stomach pain,indigestion,diarrhea,and other conditions that severely impact the quality of life of GWI veterans.However,despite a high prevalence of gastrointestinal impairments among these veterans,most research attention has focused on neurological disturbances.This perspective provides a comprehensive overview of current in vivo research advancements elucidating the underlying mechanisms contributing to gastrointestinal disorders in GWI.Generally,these in vivo and in vitro models propose that neuroinflammation alters gut motility and drives the gastrointestinal symptoms reported in GWI.Additionally,this perspective highlights the potential and challenges of in vitro bioengineering models,which could be a crucial contributor to understanding and treating the pathology of gastrointestinal related-GWI.展开更多
Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications.These nanostructures,crafted through sophisti...Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications.These nanostructures,crafted through sophisticated bioengineering techniques,can dynamically and precisely respond to both physiological and physical stimuli,including nucleic acids(DNA/RNA),adenosine triphosphate,proteins,ions,small molecules,pH,light,and temperature.They offer high sensitivity and specificity,making them ideal for applications such as biomarker detection,gene therapy,and controlled targeted drug delivery.In this review,we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine,including biosensing,targeted drug delivery,and therapeutics.Finally,we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.展开更多
Orbital fractures are a frequent and serious problem for practicing ophthalmologists. The complexity of the pathology is explained by the combined nature of the injuries(often associated with craniofacial injuries), m...Orbital fractures are a frequent and serious problem for practicing ophthalmologists. The complexity of the pathology is explained by the combined nature of the injuries(often associated with craniofacial injuries), multistage treatments, results that are often unsatisfactory, and a wide range of complaints about functional and cosmetic limitations. Over the years, significant progress has been made in the field of orbital reconstruction,allowing the transition from traditional methods using simple materials to innovative bioengineering solutions.This evolution has been driven by advances in surgical technologies, imaging techniques, and biomaterials aimed at optimizing the restoration of the shape and function of the orbital region. Traditional approaches are based on the use of autologous tissues such as bone grafts and muscle flaps, which provide biocompatibility and natural integration, but have limitations in terms of customization and accessibility. The advent of patient-specific implants and 3D printing technology has revolutionized the reconstruction of the orbit, allowing implants to be precisely adapted to a patient's anatomy. Biocompatible materials, such as porous polyethylene, titanium, and silicone, have become the basis for orbital reconstruction, ensuring durability and compatibility while minimizing long-term complications. Bioengineered solutions hold promise for further advancements in orbital reconstruction. We searched Pub Med, Cyberleninka, and other verified databases for published articles on orbital reconstruction reported in the literature between 1960 and January 2024. In this article, we consider the advantages and disadvantages of each category of reconstruction materials and provide up-to-date information on the methods for modifying their properties using modern processing technologies.展开更多
Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengine...Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengineered slope stability facilitated by vegetation. However, the coupling of these effects on the stability of vegetated slope has been ignored. The objective of this study is to investigate the hydro-mechanical impact of vegetation growth and spacing on the stability of bioengineered slopes based on the predictions of a calibrated numerical model against field measurements. The impact of vegetation is investigated, with specific attention given to different plant spacing and growth stages, utilizing Schefflera arboricola. In the context of rainfall, it was observed that younger vegetation demonstrated more effective matric suction retention and recovery up to 25 kPa compared to the aged vegetation. Vegetation was revealed to substantially enhance the factor of safety up to 0.3 compared to the bare slope. Plant growth and reducing plant spacing increased the impact of root systems on both hydraulic and mechanical stability, primarily attributable to the influence of root cohesion rather than transpiration rates. The results revealed that the mechanical contribution to the factor of safety enhancement was raised from one-third to two-thirds because of the vegetation-induced cohesion within the growing rooted zone.展开更多
In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out...In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out.This reform focuses on aspects such as“building a professional teacher team for ideological and political education,scientifically designing the ideological and political teaching system,innovating classroom teaching methods,and improving both formative and summative evaluation systems.”The“Craftsmanship in Education and Cultivating Soul and Roots”small private online course hybrid teaching reform for the Bioengineering Downstream Technology online open course provides a replicable model for the comprehensive implementation of ideological and political education in engineering courses and offers a reference for advancing ideological and political education and hybrid teaching reform in new engineering disciplines.展开更多
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,de...Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy.展开更多
The female reproductive system consists of the ovaries,the female gonads,and the reproductive tract organs of the fallopian tubes,uterus,cervix,and vagina.It functions to provide hormonal support and anatomical struct...The female reproductive system consists of the ovaries,the female gonads,and the reproductive tract organs of the fallopian tubes,uterus,cervix,and vagina.It functions to provide hormonal support and anatomical structure for the production of new offspring.A number of endogenous and exogenous factors can impact female reproductive health and fertility,including genetic vulnerability,medications,environmental exposures,age,nutrition,and diseases.To date,due to the ethical concerns of using human subjects in biomedical research,the majority of studies use in vivo animal models and 2D cell/tissue culture models to study female reproduction.However,the complexity and species difference of the female reproductive system in humans make it difficult to compare to those of animals.Moreover,the monolayered cells cultured on flat plastics or glass lose their 3D architecture as well as the physical and/or biochemical contacts with other cells in vivo.Further,all reproductive organs do not work alone but interconnect with each other and also with non-reproductive organs to support female reproductive,endocrine,and systemic health.These facts suggest that there is an urgent and unmet need to develop representative,effective,and efficient in vitro models for studying human female reproduction.The prodigious advancements of bioengineering(e.g.,biomaterials,3D printing,and organ-on-a-chip)allow us to study female reproduction in an entirely new way.Here,we review recent advances that use bioengineering methods to study female reproduction,including the bioengineering models of the ovary,fallopian tube,uterus,embryo implantation,placenta,and reproductive disease.展开更多
Extracellular vesicles(EVs)-based cell-free therapy,particularly stem cell-derived extracellular vesicles(SC-EVs),offers new insights into treating a series of neurological disorders and becomes a promising candidate ...Extracellular vesicles(EVs)-based cell-free therapy,particularly stem cell-derived extracellular vesicles(SC-EVs),offers new insights into treating a series of neurological disorders and becomes a promising candidate for alternative stem cell regenerative therapy.Currently,SC-EVs are considered direct therapeutic agents by themselves and/or dynamic delivery systems as they have a similar regenerative capacity of stem cells to promote neurogenesis and can easily load many functional small molecules to recipient cells in the central nervous system.Meanwhile,as non-living entities,SC-EVs avoid the uncontrollability and manufacturability limitations of live stem cell products in vivo(e.g.,low survival rate,immune response,and tumorigenicity)and in vitro(e.g.,restricted sources,complex preparation processes,poor quality control,low storage,shipping instability,and ethical controversy)by strict quality control system.Moreover,SC-EVs can be engineered or designed to enhance further overall yield,increase bioactivity,improve targeting,and extend their half-life.Here,this review provides an overview on the biological properties of SC-EVs,and the current progress in the strategies of native or bioengineered SC-EVs for nerve injury repairing is presented.Then we further summarize the challenges of recent research and perspectives for successful clinical application to advance SC-EVs from bench to bedside in neurological diseases.展开更多
Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producin...Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed.展开更多
End stage liver diseases (ESLD) represent a major, neglected global public health crisis which requires an urgent action towards fnding a proper cure. Orthotro-pic liver transplantation has been the only definitive ...End stage liver diseases (ESLD) represent a major, neglected global public health crisis which requires an urgent action towards fnding a proper cure. Orthotro-pic liver transplantation has been the only definitive treatment modality for ESLD. However, shortage of donor organs, timely unavailability, post-surgery related complications and financial burden on the patients li-mits the number of patients receiving the transplants. Since last two decades cell-based therapies have revolu-tionized the feld of organ/tissue regeneration. However providing an alternative organ source to address the donor liver shortage still poses potential challenges. The developments made in this direction provide useful futuristic approaches, which could be translated into preclinical and clinical settings targeting appropriate applications in specific disease conditions. Earlier studies have demonstrated the applicability of this particular approach to generate functional organ in rodent system by connecting them with portal and hepatic circulatory networks. However, such strategy requires very high level of surgical expertise and also poses the technical and financial questions towards its future applicability. Hence, alternative sites for generating secondary organs are being tested in several types of disease conditions. Among different sites, omentum has been proved to be more appropriate site for implanting several kinds of functional tissue constructs without eliciting much immunological response. Hence, omentum may be con-sidered as better site for transplanting humanized bio-engineered ex vivo generated livers, thereby creating a secondary organ at intra-omental site. However, the expertise for generating such bioengineered organs are limited and only very few centres are involved for inve-stigating the potential use of such implants in clinical practice due to gap between the clinical transplant surgeons and basic scientists working on the concept evolution. Herein we discuss the recent advances and challenges to create functional secondary organs thr-ough intra-omental transplantation of ex vivo genera-ted bioengineered humanized livers and their further application in the management of ESLD as a supportive bridge for organ transplantation.展开更多
Bioengineered materials are used as a substitute in many fields of medicine,especially in plastic surgery and in burns.In ophthalmic plastic surgery they can be used for covering large tissue defects or as a tarsal pl...Bioengineered materials are used as a substitute in many fields of medicine,especially in plastic surgery and in burns.In ophthalmic plastic surgery they can be used for covering large tissue defects or as a tarsal plate substitute,in cases when it is not possible to use conventional surgical techniques.We have searched PubMed and Web of Science scientific databases.We can generally categorize skin substitutes by the type of tissue used-we distinguish autografts,allografts,and xenografts.There are also completely synthetic substitutes.The aim of our article was to summarize the current state of knowledge and to sum up all the clinical applications of bioengineered materials in the periocular region.There are only a few scientific articles about this topic and lack of prospective randomized studies aimed on use of bioengineered materials in periocular region.Nevertheless,there are many articles describing successful case reports or case reports series.According to literature,bioengineered materials are the most commonly used in big traumas or large surgical defects,especially in oculoplastic tumour surgery.Bioengineered dermal substitutes are not frequently used in the periocular region.Dermal substitutes are useful,when it is not possible to close the defect with any other conventional surgical technique.展开更多
AIM To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. METHODS Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the ...AIM To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. METHODS Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses.RESULTS The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs.CONCLUSION The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.展开更多
Liver transplantation is the only curative therapy for end stage liver disease,but is limited by the organ shortage,and is associated with the adverse consequences of immunosuppression.Repopulation of decellularised w...Liver transplantation is the only curative therapy for end stage liver disease,but is limited by the organ shortage,and is associated with the adverse consequences of immunosuppression.Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution,allowing reliable and timely organ sourcing without the need for immunosuppression.Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact,as well as retaining the instructive cell fate determining biochemicals contained therein.Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models,using a wide range of cell types including primary cells,cell lines,foetal stem cells,and induced pluripotent stem cells.Within these models,a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo.Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes,though advances in organoid culture may help address this.Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo,but with cell types that would limit clinical applications,and which have not been shown to have the specific functions of liver sinusoidal endothelial cells.Minority cell groups such as Kupffer cells and stellate cells have not been repopulated.Bioengineering by repopulation of decellularised scaffolds has significantly progressed,but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.展开更多
In January of 2010 we will launch Bioengineered Bugs,the first international peerreviewed journal of its kind to focus on genetic engineering which involves the generation of recombinant strains(from higher plants and...In January of 2010 we will launch Bioengineered Bugs,the first international peerreviewed journal of its kind to focus on genetic engineering which involves the generation of recombinant strains(from higher plants and animals to bacteria,fungi and viruses)and their metabolic products for beneficial applications in food,medicine,industry,environment and bio-defense.Bioengineered Bugs boasts an impressive international Editorial Board,including展开更多
This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order m...This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.展开更多
The dependence to fossil fuels has increased the amount of greenhouse gases in the atmosphere.That is why,the production of renewable and sustainable biofuels has gained a long-term importance for both scientific and ...The dependence to fossil fuels has increased the amount of greenhouse gases in the atmosphere.That is why,the production of renewable and sustainable biofuels has gained a long-term importance for both scientific and political necessities.In this context,algae are promising in terms of alternative biofuels resources.For this reason,intensive scientific researches have been carried out in recent years on providing optimum efficiency in this regard.Bioengineering is a discipline that applies engineering principles of design and analysis to biological systems and biomedical technologies.Examples of bioengineering research include bacteria or microalgae engineered to produce valuable bioactive chemicals.Microalgae by target gene modification may serve as a promising source for the production of biofuels and bio-based chemicals.A lot of research has been carried out by applying microalgae genomic editing technique with the aim to produce numerous biotechnological products.Some successful previously reported research and production activities are still underway in this area.However,in order to produce the desired products efficiently with manipulated microalgae biorefinery,there is a need to overcome the problem of low biomass production despite high production costs.The aim of this work is to give special attention to the rich potential content of microalgae and to provide information on algal genetic manipulations to increase products by bioengineering methods.展开更多
Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of in-testinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition ...Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of in-testinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neoformed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option.展开更多
Based on the overall planning of environmental cultural construction of Yangling Vocational & Technical College and the college–enterprise co-construction of Doucun Farm, this paper combined environmental cultura...Based on the overall planning of environmental cultural construction of Yangling Vocational & Technical College and the college–enterprise co-construction of Doucun Farm, this paper combined environmental cultural reformation inside and outside the college and reform of off-campus teaching experiment farm in view of outstanding agricultural characteristics of the bioengineering branch, with environmental health preservation as the fundamental goal and "health-preserving agriculture" as the link. In addition, four major characteristic landscape frameworks of "point, line, surface, and body" were established, and the effective construction approaches of health-preserving environmental cultural landscapes in vocational colleges were explored.展开更多
基金Supported by the Tianjin Graduate Research Innovation Project&TUTCM Graduate Research Innovation Project,No.YJSKC-20231012.
文摘Peripheral nerve injury(PNI)is a common disease that is difficult to nerve regeneration with current therapies.Fortunately,Zou et al demonstrated the role and mechanism of bone marrow derived mesenchymal stem cells(BMSCs)in promoting nerve regeneration,revealing broad prospects for BMSCs trans-plantation in alleviating PNI.We confirmed the fact that BMSCs significantly alleviate PNI,but there are shortcomings such as low cell survival rate and immune rejection,which limit the wide application of BMSCs.BMSCs-derived exosomes(Exos)are considered as a promising cell-free nanomedicine for PNI,avoiding the ethical issues of BMSCs.Exos in combination with bioengineering therapeutics(including extracellular matrix,hydrogel)brings new hope for PNI,provides a favorable microenvironment for neurological restoration and a therapeutic strategy with a favorable safety profile,significantly increases ex-pression of neurotrophic factors,promotes axonal and myelin regeneration,and demonstrates a strong potential to enhance neurogenesis.Therefore,engineered Exos exhibit better properties,such as stronger targeting and more beneficial components.This article briefly describes the role of nanotechnology and bioe-ngineering therapies for BMSCs in PNI,proposes clinical application prospects and challenges of nanotechnology and bioengineering BMSCs-derived Exos in PNI to improve the efficacy of BMSCs in the treatment of PNI.
基金Supported by Undergraduate Education and Teaching Reform Research Project of Chengdu University(XJJG-20242025228)Sichuan Genuine Medicinal Materials and Traditional Chinese Medicine Innovation Team(SCCXTD-2025-19)Sichuan Science and Technology Program(2021YFYZ0012).
文摘The rapid advancement of the bioeconomy imposes increasingly stringent demands on bioengineering education.Drawing on data from the 2025 Chinese Undergraduate Employment Report and related sources,this study revealed that while employment placement rates for bioengineering graduates remain stable,starting salaries exhibit limited growth and career trajectories lack clarity.These challenges originate from a curriculum lagging behind technological progress,inadequate practical training,and a mismatch between student competencies and industry expectations.To address these issues,this paper proposed a strategic framework grounded in"demand-driven design,industry-education integration,and competence-centered development".Key strategies include dynamic curriculum renewal,collaborative university-industry training,holistic competency development,and personalized student support,which collectively aim at enhancing graduates employment competitiveness and long-term professional sustainability.
基金supported by the Congressionally Directed Medical Research Program Award through the Gulf War Illness Research Program (SAR, W81XWH-21±1-0477)funding from the Aviles-Johnson Doctoral Diversity Fellowship Awardthe National Defense Science and Engineering Graduate Fellowship Awards (CAC)
文摘Gulf War Illness(GWI)is characterized by a wide range of symptoms that manifests largely as gastrointestinal symptoms.Among these gastrointestinal symptoms,motility disorders are highly prevalent,presenting as chronic constipation,stomach pain,indigestion,diarrhea,and other conditions that severely impact the quality of life of GWI veterans.However,despite a high prevalence of gastrointestinal impairments among these veterans,most research attention has focused on neurological disturbances.This perspective provides a comprehensive overview of current in vivo research advancements elucidating the underlying mechanisms contributing to gastrointestinal disorders in GWI.Generally,these in vivo and in vitro models propose that neuroinflammation alters gut motility and drives the gastrointestinal symptoms reported in GWI.Additionally,this perspective highlights the potential and challenges of in vitro bioengineering models,which could be a crucial contributor to understanding and treating the pathology of gastrointestinal related-GWI.
文摘Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications.These nanostructures,crafted through sophisticated bioengineering techniques,can dynamically and precisely respond to both physiological and physical stimuli,including nucleic acids(DNA/RNA),adenosine triphosphate,proteins,ions,small molecules,pH,light,and temperature.They offer high sensitivity and specificity,making them ideal for applications such as biomarker detection,gene therapy,and controlled targeted drug delivery.In this review,we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine,including biosensing,targeted drug delivery,and therapeutics.Finally,we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.
文摘Orbital fractures are a frequent and serious problem for practicing ophthalmologists. The complexity of the pathology is explained by the combined nature of the injuries(often associated with craniofacial injuries), multistage treatments, results that are often unsatisfactory, and a wide range of complaints about functional and cosmetic limitations. Over the years, significant progress has been made in the field of orbital reconstruction,allowing the transition from traditional methods using simple materials to innovative bioengineering solutions.This evolution has been driven by advances in surgical technologies, imaging techniques, and biomaterials aimed at optimizing the restoration of the shape and function of the orbital region. Traditional approaches are based on the use of autologous tissues such as bone grafts and muscle flaps, which provide biocompatibility and natural integration, but have limitations in terms of customization and accessibility. The advent of patient-specific implants and 3D printing technology has revolutionized the reconstruction of the orbit, allowing implants to be precisely adapted to a patient's anatomy. Biocompatible materials, such as porous polyethylene, titanium, and silicone, have become the basis for orbital reconstruction, ensuring durability and compatibility while minimizing long-term complications. Bioengineered solutions hold promise for further advancements in orbital reconstruction. We searched Pub Med, Cyberleninka, and other verified databases for published articles on orbital reconstruction reported in the literature between 1960 and January 2024. In this article, we consider the advantages and disadvantages of each category of reconstruction materials and provide up-to-date information on the methods for modifying their properties using modern processing technologies.
基金ort provided by Iran National Science Foundation for“Experimental study of the hydromechanical behavior of rooted soils in green stabilization of unsaturated slopes”by way of grant No.4000730by the Hong Kong Research Grants Council(no.16202422 and C6006-20G)is gratefully acknowledged.
文摘Shallow landslides can be mitigated through the hydro-mechanical reinforcement provided by vegetation. Several critical parameters, such as plant spacing and plant age, play a significant role in influencing bioengineered slope stability facilitated by vegetation. However, the coupling of these effects on the stability of vegetated slope has been ignored. The objective of this study is to investigate the hydro-mechanical impact of vegetation growth and spacing on the stability of bioengineered slopes based on the predictions of a calibrated numerical model against field measurements. The impact of vegetation is investigated, with specific attention given to different plant spacing and growth stages, utilizing Schefflera arboricola. In the context of rainfall, it was observed that younger vegetation demonstrated more effective matric suction retention and recovery up to 25 kPa compared to the aged vegetation. Vegetation was revealed to substantially enhance the factor of safety up to 0.3 compared to the bare slope. Plant growth and reducing plant spacing increased the impact of root systems on both hydraulic and mechanical stability, primarily attributable to the influence of root cohesion rather than transpiration rates. The results revealed that the mechanical contribution to the factor of safety enhancement was raised from one-third to two-thirds because of the vegetation-induced cohesion within the growing rooted zone.
基金Guangdong Province Undergraduate Online Open Course Guidance Committee Research Project(2022ZXKC462)Foshan Philosophy and Social Science Planning Project(2024-GJ 037)+4 种基金Provincial First-Class Undergraduate Courses of Guangdong Provincial Education Department(Guangdong Education Gaohan[2022]No.10)Innovation Project of Guangdong Graduate Education(2022JGXM129,2022JGXM128,2023ANLK-080)Foshan University Curriculum Ideological and Political Teaching Reform and Practice Demonstration Project in 2023Quality Engineering Project of Foshan University in 2023Collaborative Education Project of the Ministry of Education in 2023(230703232312141)。
文摘In the context of emerging engineering disciplines,a hybrid teaching reform for the Bioengineering Downstream Technology course,based on ideological and political education and online open courses,is being carried out.This reform focuses on aspects such as“building a professional teacher team for ideological and political education,scientifically designing the ideological and political teaching system,innovating classroom teaching methods,and improving both formative and summative evaluation systems.”The“Craftsmanship in Education and Cultivating Soul and Roots”small private online course hybrid teaching reform for the Bioengineering Downstream Technology online open course provides a replicable model for the comprehensive implementation of ideological and political education in engineering courses and offers a reference for advancing ideological and political education and hybrid teaching reform in new engineering disciplines.
基金supported by The Plastic Surgery Foundation Research Pilot Grant,No.627383(to KAS).
文摘Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy.
基金This work is supported by the National Institutes of Health(NIH K01ES030014 and P01ES028942)National Science Foundation(NSF 183291)。
文摘The female reproductive system consists of the ovaries,the female gonads,and the reproductive tract organs of the fallopian tubes,uterus,cervix,and vagina.It functions to provide hormonal support and anatomical structure for the production of new offspring.A number of endogenous and exogenous factors can impact female reproductive health and fertility,including genetic vulnerability,medications,environmental exposures,age,nutrition,and diseases.To date,due to the ethical concerns of using human subjects in biomedical research,the majority of studies use in vivo animal models and 2D cell/tissue culture models to study female reproduction.However,the complexity and species difference of the female reproductive system in humans make it difficult to compare to those of animals.Moreover,the monolayered cells cultured on flat plastics or glass lose their 3D architecture as well as the physical and/or biochemical contacts with other cells in vivo.Further,all reproductive organs do not work alone but interconnect with each other and also with non-reproductive organs to support female reproductive,endocrine,and systemic health.These facts suggest that there is an urgent and unmet need to develop representative,effective,and efficient in vitro models for studying human female reproduction.The prodigious advancements of bioengineering(e.g.,biomaterials,3D printing,and organ-on-a-chip)allow us to study female reproduction in an entirely new way.Here,we review recent advances that use bioengineering methods to study female reproduction,including the bioengineering models of the ovary,fallopian tube,uterus,embryo implantation,placenta,and reproductive disease.
基金financial support received from the Program of the China National Health Commission and National Medical Products Administration(NMPA)under Grant No.CMR-20161129-1003(to JL)The National Nature Science Foundation of China under Grant No.82072953(to LW)+2 种基金The Liaoning Province Excellent Talent Program Project under Grant No.XLYC1902031(to JL)Top young talents of Liaoning Provincial Government under Grant No.XLYC1907009(to LW)Dalian Outstanding Young Talents Project under Grant No.2021RJ12(to LW)。
文摘Extracellular vesicles(EVs)-based cell-free therapy,particularly stem cell-derived extracellular vesicles(SC-EVs),offers new insights into treating a series of neurological disorders and becomes a promising candidate for alternative stem cell regenerative therapy.Currently,SC-EVs are considered direct therapeutic agents by themselves and/or dynamic delivery systems as they have a similar regenerative capacity of stem cells to promote neurogenesis and can easily load many functional small molecules to recipient cells in the central nervous system.Meanwhile,as non-living entities,SC-EVs avoid the uncontrollability and manufacturability limitations of live stem cell products in vivo(e.g.,low survival rate,immune response,and tumorigenicity)and in vitro(e.g.,restricted sources,complex preparation processes,poor quality control,low storage,shipping instability,and ethical controversy)by strict quality control system.Moreover,SC-EVs can be engineered or designed to enhance further overall yield,increase bioactivity,improve targeting,and extend their half-life.Here,this review provides an overview on the biological properties of SC-EVs,and the current progress in the strategies of native or bioengineered SC-EVs for nerve injury repairing is presented.Then we further summarize the challenges of recent research and perspectives for successful clinical application to advance SC-EVs from bench to bedside in neurological diseases.
基金financially supported by the National Natural Science Foundation of China (52125501)OPEN Project (BHJ17C019)+4 种基金the Key Research Project of Shaanxi Province (2021LLRH-08)the Program for Innovation Team of Shaanxi Province (2023-CX-TD-17)the Natural Science Basic Research Program of Shaanxi Province (2023-JCQN-0543)the China Postdoctoral Science Foundation (2021M702597)the Fundamental Research Funds for the Central Universities
文摘Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed.
文摘End stage liver diseases (ESLD) represent a major, neglected global public health crisis which requires an urgent action towards fnding a proper cure. Orthotro-pic liver transplantation has been the only definitive treatment modality for ESLD. However, shortage of donor organs, timely unavailability, post-surgery related complications and financial burden on the patients li-mits the number of patients receiving the transplants. Since last two decades cell-based therapies have revolu-tionized the feld of organ/tissue regeneration. However providing an alternative organ source to address the donor liver shortage still poses potential challenges. The developments made in this direction provide useful futuristic approaches, which could be translated into preclinical and clinical settings targeting appropriate applications in specific disease conditions. Earlier studies have demonstrated the applicability of this particular approach to generate functional organ in rodent system by connecting them with portal and hepatic circulatory networks. However, such strategy requires very high level of surgical expertise and also poses the technical and financial questions towards its future applicability. Hence, alternative sites for generating secondary organs are being tested in several types of disease conditions. Among different sites, omentum has been proved to be more appropriate site for implanting several kinds of functional tissue constructs without eliciting much immunological response. Hence, omentum may be con-sidered as better site for transplanting humanized bio-engineered ex vivo generated livers, thereby creating a secondary organ at intra-omental site. However, the expertise for generating such bioengineered organs are limited and only very few centres are involved for inve-stigating the potential use of such implants in clinical practice due to gap between the clinical transplant surgeons and basic scientists working on the concept evolution. Herein we discuss the recent advances and challenges to create functional secondary organs thr-ough intra-omental transplantation of ex vivo genera-ted bioengineered humanized livers and their further application in the management of ESLD as a supportive bridge for organ transplantation.
文摘Bioengineered materials are used as a substitute in many fields of medicine,especially in plastic surgery and in burns.In ophthalmic plastic surgery they can be used for covering large tissue defects or as a tarsal plate substitute,in cases when it is not possible to use conventional surgical techniques.We have searched PubMed and Web of Science scientific databases.We can generally categorize skin substitutes by the type of tissue used-we distinguish autografts,allografts,and xenografts.There are also completely synthetic substitutes.The aim of our article was to summarize the current state of knowledge and to sum up all the clinical applications of bioengineered materials in the periocular region.There are only a few scientific articles about this topic and lack of prospective randomized studies aimed on use of bioengineered materials in periocular region.Nevertheless,there are many articles describing successful case reports or case reports series.According to literature,bioengineered materials are the most commonly used in big traumas or large surgical defects,especially in oculoplastic tumour surgery.Bioengineered dermal substitutes are not frequently used in the periocular region.Dermal substitutes are useful,when it is not possible to close the defect with any other conventional surgical technique.
文摘AIM To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. METHODS Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses.RESULTS The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs.CONCLUSION The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.
文摘Liver transplantation is the only curative therapy for end stage liver disease,but is limited by the organ shortage,and is associated with the adverse consequences of immunosuppression.Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution,allowing reliable and timely organ sourcing without the need for immunosuppression.Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact,as well as retaining the instructive cell fate determining biochemicals contained therein.Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models,using a wide range of cell types including primary cells,cell lines,foetal stem cells,and induced pluripotent stem cells.Within these models,a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo.Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes,though advances in organoid culture may help address this.Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo,but with cell types that would limit clinical applications,and which have not been shown to have the specific functions of liver sinusoidal endothelial cells.Minority cell groups such as Kupffer cells and stellate cells have not been repopulated.Bioengineering by repopulation of decellularised scaffolds has significantly progressed,but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.
文摘In January of 2010 we will launch Bioengineered Bugs,the first international peerreviewed journal of its kind to focus on genetic engineering which involves the generation of recombinant strains(from higher plants and animals to bacteria,fungi and viruses)and their metabolic products for beneficial applications in food,medicine,industry,environment and bio-defense.Bioengineered Bugs boasts an impressive international Editorial Board,including
文摘This paper deals with the study of fractional order system tuning method based on Factional Order Proportional Integral Derivative( FOPID) controller in allusion to the nonlinear characteristics and fractional order mathematical model of bioengineering systems. The main contents include the design of FOPID controller and the simulation for bioengineering systems. The simulation results show that the tuning method of fractional order system based on the FOPID controller outperforms the fractional order system based on Fractional Order Proportional Integral( FOPI) controller. As it can enhance control character and improve the robustness of the system.
文摘The dependence to fossil fuels has increased the amount of greenhouse gases in the atmosphere.That is why,the production of renewable and sustainable biofuels has gained a long-term importance for both scientific and political necessities.In this context,algae are promising in terms of alternative biofuels resources.For this reason,intensive scientific researches have been carried out in recent years on providing optimum efficiency in this regard.Bioengineering is a discipline that applies engineering principles of design and analysis to biological systems and biomedical technologies.Examples of bioengineering research include bacteria or microalgae engineered to produce valuable bioactive chemicals.Microalgae by target gene modification may serve as a promising source for the production of biofuels and bio-based chemicals.A lot of research has been carried out by applying microalgae genomic editing technique with the aim to produce numerous biotechnological products.Some successful previously reported research and production activities are still underway in this area.However,in order to produce the desired products efficiently with manipulated microalgae biorefinery,there is a need to overcome the problem of low biomass production despite high production costs.The aim of this work is to give special attention to the rich potential content of microalgae and to provide information on algal genetic manipulations to increase products by bioengineering methods.
文摘Inadequate absorptive surface area poses a great challenge to the patients suffering a variety of in-testinal diseases causing short bowel syndrome. To date, these patients are managed with total parenteral nutrition or intestinal transplantation. However, these carry significant morbidity and mortality. Currently, by emergence of tissue engineering, anticipations to utilize an alternative method to increase the intestinal absorptive surface area are increasing. In this paper, we will review the improvements made over time in attempting elongating the intestine with surgical techniques as well as using intestinal bioengineering. Performing sequential intestinal lengthening was the preliminary method applied in humans. However, these methods did not reach widespread use and has limited outcome. Subsequent experimental methods were developed utilizing scaffolds to regenerate intestinal tissue and organoids unit from the intestinal epithelium. Stem cells also have been studied and applied in all types of tissue engineering. Biomaterials were utilized as a structural support for naive cells to produce bio-engineered tissue that can achieve a near-normal anatomical structure. A promising novel approach is the elongation of the intestine with an acellular biologic scaffold to generate a neoformed intestinal tissue that showed, for the first time, evidence of absorption in vivo. In the large intestine, studies are more focused on regeneration and engineering of sphincters and will be briefly reviewed. From the review of the existing literature, it can be concluded that significant progress has been achieved in these experimental methods but that these now need to be fully translated into a pre-clinical and clinical experimentation to become a future viable therapeutic option.
基金Sponsored by Humanities and Social Sciences Research Foundation of Yangling Vocational&Technical College(GJ1423)
文摘Based on the overall planning of environmental cultural construction of Yangling Vocational & Technical College and the college–enterprise co-construction of Doucun Farm, this paper combined environmental cultural reformation inside and outside the college and reform of off-campus teaching experiment farm in view of outstanding agricultural characteristics of the bioengineering branch, with environmental health preservation as the fundamental goal and "health-preserving agriculture" as the link. In addition, four major characteristic landscape frameworks of "point, line, surface, and body" were established, and the effective construction approaches of health-preserving environmental cultural landscapes in vocational colleges were explored.