Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhi...Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae,and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor,recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed.Compared with the wild-type ROL-displaying yeast,the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate.To our knowledge,this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction.Consequently,the yeast whole-cell ROL biocatalyst was constructed with high activity.The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C.Furthermore,this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.展开更多
The use of biocatalysts is attracting an increasing amount of attention in chemical catalysis.Here,we have shown that bovine serum albumin(BSA),a ubiquitous,inexpensive,non-enzymatic transport protein,can serve as a...The use of biocatalysts is attracting an increasing amount of attention in chemical catalysis.Here,we have shown that bovine serum albumin(BSA),a ubiquitous,inexpensive,non-enzymatic transport protein,can serve as an efficient,retrievable catalyst in the one-pot four-component reaction of aryl aldehydes,malononitrile,hydrazine hydrate,and ethyl acetoacetate for the synthesis of pyrano[2,3-c]pyrazoles under mild reaction conditions.The BSA biocatalyst also displayed a high catalytic affinity for acyclic/cyclic ketones to yield the corresponding pyrano[2,3-c]pyrazoles or their spirocyclic variants.The BSA could be used for at least five cycles without serious loss of catalytic activity.This novel,efficient protocol has the merits of high yield,operational simplicity,and a relatively benign environmental impact.Moreover,the method extends the promiscuity of BSA as a biocatalyst.展开更多
To examine the potential ability of edible mushrooms to act as biocatalysts, 19 basidiomycete strains were screened. Modified media (PG, O, and PGO medium) for liquid cultivation of these basidiomycete strains were de...To examine the potential ability of edible mushrooms to act as biocatalysts, 19 basidiomycete strains were screened. Modified media (PG, O, and PGO medium) for liquid cultivation of these basidiomycete strains were designed and tested. Wet cells (>10 g) of 4 basidiomycete strains (Pleurotus salmoneostramineus H7, P. salmoneostramineus H13, Ganoderma lucidum NBRC31863, Flammulina velutipes NBRC31862) were harvested from PGO medium for 7 days. The stereoselective reduction of α-keto esters using the 4 strains was tested. It was found that each of these strains had a reducing activity toward 6 aliphatic α-keto esters. In the presence of L-alanine as an additive, the reduction of ethyl 2-oxobutanoate and ethyl 2-oxopentanoete by P. salmoneostramineus H7 produced the corresponding alcohol with a high conversion ratio and with excellent enantiomeric excess (>99% e.e. (R)). Furthermore, ethyl pyruvate, ethyl 2-oxobutanoate, and ethyl 2-oxopentanoate were predominantly reduced to the corresponding (R)-hydroxy ester (>99% e.e.) by G. lucidum. Thus, we found that these edible mushrooms have great potential to be used as biocatalysts for the stereoselective reduction of carbonyl compounds.展开更多
To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified me...To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified media (1076-25% and P-1076-25% media) for liquid culture of these marine-derived actinomycetes were tested. As a result, 2 Micromonospora strains (Micromonospora sp. NBRC107096 and 107097) cultured with the 1076-25% medium and 2 Streptomyces strains (Streptomyces tateyamensis NBRC105048 and Streptomyces sp. NBRC105896) cultured with P-1076-25% medium showed a good growth. The stereoselective reduction of α-keto esters using these 4 actinomycetes was tested. As a result, it was found that these strains had a reducing activity toward various α-keto esters. The introduction of L-glutamate or sucrose as an additive remarkably increased the conversion ratios in the reduction of substrates by the Micromonospora strain. Furthermore, in the presence of L-alanine, Streptomyces tateyamensis NBRC105048 reduced ethyl pyruvate, ethyl 2-oxobutanoate, ethyl 2-oxopentanoate, ethyl 2-oxohexanoate, and ethyl 3-methyl-2-oxobutyrate to the corresponding α-hydroxy ester with a high conversion ratio and with excellent enantiomeric excess. Thus, we found that these marine-derived actinomycetes have great potential to be used as biocatalysts for stereoselective reduction of carbonyl compounds.展开更多
This article summarizes the achievements of the authors' group in the area of biocatalyst catalyzed organic reactions in recent 10 years. A strain of Geotrichum sp. obtained by screening is capable of stereos...This article summarizes the achievements of the authors' group in the area of biocatalyst catalyzed organic reactions in recent 10 years. A strain of Geotrichum sp. obtained by screening is capable of stereoselectively reducing a number of carbonyl compounds. In many cases, the stereochemistry is complementary with that obtained by baker's yeast. Therefore, this micro organism provides a useful pathway to the preparation of alcohol compounds with specific configurations. On the other hand, a number of plant sources have been screened for oxynitrilases and the hydrocyanation reactions of various arylcarboxaldehydes have been investigated. A “micro aqueous reaction system' was invented, by which a series of novel optically active cyanohydrins were prepared. On this basis, a high through put continuous reaction system has been designed. This paper also describes examples of the syntheses of bio active compounds by using the optically active compounds obtained from the above mentioned catalytic reactions as precursors.展开更多
Hydroxylation of steroid core is critical to the synthesis of steroid drugs.Direct sp^(3) C-H hydroxylation is challenging through chemical catalysis,alternatively,fungal biotransformation offers a possible solution t...Hydroxylation of steroid core is critical to the synthesis of steroid drugs.Direct sp^(3) C-H hydroxylation is challenging through chemical catalysis,alternatively,fungal biotransformation offers a possible solution to this problem.However,mining and metabolic engineering of cytochrome P450 monooxygenases(CYPs)is usually regarded as a more eco-friendly and efficient strategy.Herein,we report the mining and identification of a new steroid CYP(CYP68BE1)from Beauveria bassiana by transcriptomics,heterologous expression,in vivo and in vitro functional characterization.The catalytic promiscuity of CYP68BE1 was explored,and CYP68BE1 showed promiscuously and catalytically versatile,which is qualified for monohydroxylation on C11α,C1α,C6βand dihydroxylation on C1β,11αand C6β,11αof six steroids,leading to the production of key steroid intermediates required in the industrial synthesis of some indispensable steroid drugs.Molecular dynamics simulations were performed,revealing the molecular basis of different binding orientations of CYP68BE1 with different substrates.The discovery of CYP68BE1 offers a promising biocatalyst for enriching the steroid structural and functional diversity,which also can be applied to biosynthesize valuable steroid drug intermediates.展开更多
Photoenzymatic catalysis has become an emerging field in organic synthetic chemistry that provides eco-friendly alternatives to traditional methods. This comprehensive review examines the developing field of photoenzy...Photoenzymatic catalysis has become an emerging field in organic synthetic chemistry that provides eco-friendly alternatives to traditional methods. This comprehensive review examines the developing field of photoenzymatic catalysis, categorized by reaction types and focusing on its application in organic synthesis. This article highlights recent advances in the use of photoenzymatic reactions in carbon-carbon cross-coupling, ketone and alkene reduction, hydroamination, and hydrosulfonylation, mostly by flavin-dependent “ene”-reductases and nitroreductases. In each case, we exemplified the substrate scope that produces products with high yield and enantioselectivity. Additionally, the emerging trends in developing new enzymatic variants and novel reaction pathways that broaden the scope and enhance yield of these reactions were discussed.展开更多
基金Project supported by the National High-Tech R & D Program (863) of China (No. 2006AA10Z308)the National Science Foundation of China (No. 20776130)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (No. Y4090309)the Zhejiang Provincial Science and Technology Program of China (No. 2009C32009)
文摘Surface display is effectively utilized to construct a whole-cell biocatalyst.Codon optimization has been proven to be effective in maximizing production of heterologous proteins in yeast.Here,the cDNA sequence of Rhizopus oryzae lipase (ROL) was optimized and synthesized according to the codon bias of Saccharomyces cerevisiae,and based on the Saccharomyces cerevisiae cell surface display system with α-agglutinin as an anchor,recombinant yeast displaying fully codon-optimized ROL with high activity was successfully constructed.Compared with the wild-type ROL-displaying yeast,the activity of the codon-optimized ROL yeast whole-cell biocatalyst (25 U/g dried cells) was 12.8-fold higher in a hydrolysis reaction using p-nitrophenyl palmitate (pNPP) as the substrate.To our knowledge,this was the first attempt to combine the techniques of yeast surface display and codon optimization for whole-cell biocatalyst construction.Consequently,the yeast whole-cell ROL biocatalyst was constructed with high activity.The optimum pH and temperature for the yeast whole-cell ROL biocatalyst were pH 7.0 and 40 °C.Furthermore,this whole-cell biocatalyst was applied to the hydrolysis of tributyrin and the resulted conversion of butyric acid reached 96.91% after 144 h.
基金supported by the National Natural Science Foundation of China(21372099,21072077)the the Natural Science Foundation of Guangdong Province(10151063201000051,8151063201000016)~~
文摘The use of biocatalysts is attracting an increasing amount of attention in chemical catalysis.Here,we have shown that bovine serum albumin(BSA),a ubiquitous,inexpensive,non-enzymatic transport protein,can serve as an efficient,retrievable catalyst in the one-pot four-component reaction of aryl aldehydes,malononitrile,hydrazine hydrate,and ethyl acetoacetate for the synthesis of pyrano[2,3-c]pyrazoles under mild reaction conditions.The BSA biocatalyst also displayed a high catalytic affinity for acyclic/cyclic ketones to yield the corresponding pyrano[2,3-c]pyrazoles or their spirocyclic variants.The BSA could be used for at least five cycles without serious loss of catalytic activity.This novel,efficient protocol has the merits of high yield,operational simplicity,and a relatively benign environmental impact.Moreover,the method extends the promiscuity of BSA as a biocatalyst.
文摘To examine the potential ability of edible mushrooms to act as biocatalysts, 19 basidiomycete strains were screened. Modified media (PG, O, and PGO medium) for liquid cultivation of these basidiomycete strains were designed and tested. Wet cells (>10 g) of 4 basidiomycete strains (Pleurotus salmoneostramineus H7, P. salmoneostramineus H13, Ganoderma lucidum NBRC31863, Flammulina velutipes NBRC31862) were harvested from PGO medium for 7 days. The stereoselective reduction of α-keto esters using the 4 strains was tested. It was found that each of these strains had a reducing activity toward 6 aliphatic α-keto esters. In the presence of L-alanine as an additive, the reduction of ethyl 2-oxobutanoate and ethyl 2-oxopentanoete by P. salmoneostramineus H7 produced the corresponding alcohol with a high conversion ratio and with excellent enantiomeric excess (>99% e.e. (R)). Furthermore, ethyl pyruvate, ethyl 2-oxobutanoate, and ethyl 2-oxopentanoate were predominantly reduced to the corresponding (R)-hydroxy ester (>99% e.e.) by G. lucidum. Thus, we found that these edible mushrooms have great potential to be used as biocatalysts for the stereoselective reduction of carbonyl compounds.
文摘To research the potential ability of marine-derived actinomycetes to act as biocatalysts, 8 Micromonospora strains and 5 Streptomyces strains were screened. Two recommended media (227 and 1076 media) and 2 modified media (1076-25% and P-1076-25% media) for liquid culture of these marine-derived actinomycetes were tested. As a result, 2 Micromonospora strains (Micromonospora sp. NBRC107096 and 107097) cultured with the 1076-25% medium and 2 Streptomyces strains (Streptomyces tateyamensis NBRC105048 and Streptomyces sp. NBRC105896) cultured with P-1076-25% medium showed a good growth. The stereoselective reduction of α-keto esters using these 4 actinomycetes was tested. As a result, it was found that these strains had a reducing activity toward various α-keto esters. The introduction of L-glutamate or sucrose as an additive remarkably increased the conversion ratios in the reduction of substrates by the Micromonospora strain. Furthermore, in the presence of L-alanine, Streptomyces tateyamensis NBRC105048 reduced ethyl pyruvate, ethyl 2-oxobutanoate, ethyl 2-oxopentanoate, ethyl 2-oxohexanoate, and ethyl 3-methyl-2-oxobutyrate to the corresponding α-hydroxy ester with a high conversion ratio and with excellent enantiomeric excess. Thus, we found that these marine-derived actinomycetes have great potential to be used as biocatalysts for stereoselective reduction of carbonyl compounds.
基金theNationalNaturalScienceFoundationofChinaandStateMinistryofScienceandTechnology (No .G2 0 0 0 0 775 0 6)
文摘This article summarizes the achievements of the authors' group in the area of biocatalyst catalyzed organic reactions in recent 10 years. A strain of Geotrichum sp. obtained by screening is capable of stereoselectively reducing a number of carbonyl compounds. In many cases, the stereochemistry is complementary with that obtained by baker's yeast. Therefore, this micro organism provides a useful pathway to the preparation of alcohol compounds with specific configurations. On the other hand, a number of plant sources have been screened for oxynitrilases and the hydrocyanation reactions of various arylcarboxaldehydes have been investigated. A “micro aqueous reaction system' was invented, by which a series of novel optically active cyanohydrins were prepared. On this basis, a high through put continuous reaction system has been designed. This paper also describes examples of the syntheses of bio active compounds by using the optically active compounds obtained from the above mentioned catalytic reactions as precursors.
基金supported by the National Key Research and Development Program of China(Nos.2020YFA0908003 and 2018YFA0901900)CAMS Innovation Fund for Medical Sciences(No.CIFMS2021-I2M-1-029).
文摘Hydroxylation of steroid core is critical to the synthesis of steroid drugs.Direct sp^(3) C-H hydroxylation is challenging through chemical catalysis,alternatively,fungal biotransformation offers a possible solution to this problem.However,mining and metabolic engineering of cytochrome P450 monooxygenases(CYPs)is usually regarded as a more eco-friendly and efficient strategy.Herein,we report the mining and identification of a new steroid CYP(CYP68BE1)from Beauveria bassiana by transcriptomics,heterologous expression,in vivo and in vitro functional characterization.The catalytic promiscuity of CYP68BE1 was explored,and CYP68BE1 showed promiscuously and catalytically versatile,which is qualified for monohydroxylation on C11α,C1α,C6βand dihydroxylation on C1β,11αand C6β,11αof six steroids,leading to the production of key steroid intermediates required in the industrial synthesis of some indispensable steroid drugs.Molecular dynamics simulations were performed,revealing the molecular basis of different binding orientations of CYP68BE1 with different substrates.The discovery of CYP68BE1 offers a promising biocatalyst for enriching the steroid structural and functional diversity,which also can be applied to biosynthesize valuable steroid drug intermediates.
文摘Photoenzymatic catalysis has become an emerging field in organic synthetic chemistry that provides eco-friendly alternatives to traditional methods. This comprehensive review examines the developing field of photoenzymatic catalysis, categorized by reaction types and focusing on its application in organic synthesis. This article highlights recent advances in the use of photoenzymatic reactions in carbon-carbon cross-coupling, ketone and alkene reduction, hydroamination, and hydrosulfonylation, mostly by flavin-dependent “ene”-reductases and nitroreductases. In each case, we exemplified the substrate scope that produces products with high yield and enantioselectivity. Additionally, the emerging trends in developing new enzymatic variants and novel reaction pathways that broaden the scope and enhance yield of these reactions were discussed.