PBDEs are widely used brominated flame retardant, which are increasingly reported in the environment. Concentrations of thirteen PBDEs in a large number of channel catfish and fish feeds collected from Hubei province ...PBDEs are widely used brominated flame retardant, which are increasingly reported in the environment. Concentrations of thirteen PBDEs in a large number of channel catfish and fish feeds collected from Hubei province of China were investigated in this study. A fast isotopic dilution GC-MS method was firstly developed to simultaneously determine thirteen PBDEs in channel catfish and fish feeds in this study, and especially for the first time PBDEs in fish feeds. Pressurized liquid extraction and multi-layer silica gel column chromatography cleanup were used, some important steps and crucial parameters were modified and intensified compared with other literatures, and GC and MS conditions were optimized. The limits of quantitation values of 0.25 - 5 μg·kg-1 wet weight in channel catfish were calculated for PBDEs;so did 1 - 20 μg·kg-1 wet weight in fish feeds. In addition, good repeatability and accuracy of the whole method were achieved. The established methods were therefore suitable for the simultaneous determinations of thirteen PBDEs in these samples at trace contamination levels. Using the established methods, PBDEs emerged in 10 of 180 channel catfish and 13 of 115 fish feeds, and the dominant PBDEs homologues were PBDE-28, PBDE-47, PBDE-100, PBDE-99, PBDE-154, PBDE-153 and PBDE-183. The detection rates of seven PBDEs congeners were in turn respectively 1.74%, 7.83%, 4.35%, 5.22%, 3.48%, 2.61% and 2.61% in fish feeds, and detection rates of seven PBDEs congeners were in turn respectively 1.11%, 3.89%, 2.22%, 1.67%, 1.11%, 1.11% and 1.11% in channel catfish. There was significant correlation in PBDEs between matching channel catfish and fish feeds (R2 = 0.742, P < 0.001, n = 30), suggesting that fish feeds contaminated with PBDEs possibly resulted in PBDEs residual in channel catfish through biological transfer.展开更多
The present study examines the toxicological effects and bioaccumulation of strontium(Sr^(2+))in two Moroccan wheat species,Triticum durum(Nachit)and Triticum aestivum(Ibtissam).Germination rates and seedling growth p...The present study examines the toxicological effects and bioaccumulation of strontium(Sr^(2+))in two Moroccan wheat species,Triticum durum(Nachit)and Triticum aestivum(Ibtissam).Germination rates and seedling growth parameters were evaluated under Sr^(2+)concentrations of 0,10,100,and 1000 mM.Results revealed a significant decline in germination rates as Sr^(2+)concentrations increased,with T.aestivum showing higher sensitivity compared to T.durum.Low Sr^(2+)concentrations(10 mM)initially promoted stem growth in T.aestivum,but growth declined sharply at higher concentrations.Both species sustained growth at moderate Sr^(2+)concentrations(100 mM),but experienced a substantial reduction at 1000 mM,with T.durum demonstrating slightly better tolerance.Elevated Sr^(2+)concentrations notably affected root length and stem branching,indicating severe phytotoxic effects.Enzyme activity assays showed that at low Sr^(2+)concentration(10 mM),GST,CAT,POD,and SOD activities were similar to the control.At moderate concentrations(100 mM),GST and POD activities increased,suggesting enhanced detoxification.At high concentrations(1000 mM),all enzyme activities were significantly elevated,reflecting a robust antioxidative defense mechanism.This study provides valuable insights into the toxicological impacts and physiological responses of these wheat species to Sr^(2+)stress.展开更多
Nanoplastics are emerging contaminants that may co-exist with organochlorine pesticides and adversely affect invertebrates in the environment.However,the impact of environmental aging on the combined toxicity of nanop...Nanoplastics are emerging contaminants that may co-exist with organochlorine pesticides and adversely affect invertebrates in the environment.However,the impact of environmental aging on the combined toxicity of nanoplastics and organochlorine pesticides remains unclear.This study investigated the effects of aging on the combined toxicity of polystyrene nanoplastics(PS NPs)and chlordane against Caenorhabditis elegans.The results showed that photo-aging altered the physicochemical properties of PS NPs and promoted the combined toxicity of PS NPs and chlordane to nematodes by reducing survival rate,body length and enhancing germline apoptosis.Additionally,combined exposure of nematodes to aged PS NPs and chlordane significantly increased reactive oxygen species production and intestinal permeability,suggesting that aging enhances combined toxicity through oxidative stress and intestinal damage.Moreover,aging increased chlordane contents in nematodes without promoting PS NPs accumulation,potentially leading to increased combined toxicity of PS NPs and chlordane.Notably,aging significantly increased the accumulation of PS NPs in the posterior intestine of the nematode during co-exposure,which may be responsible for the most sensitive and highest degree of change in germline apoptosis.These observations emphasize the significance of accounting for environmental aging as well as the accumulation and distribution of nanoplastics in organisms when assessing the combined effects of nanoplastics and coexisting pollutants.展开更多
Dill(Anethum graveolens),an annual species,was used to study the impact of metallic pollution potentially spreading fromthe nickel smelter dump in Dolna Streda(Slovakia)by monitoring 55 elements.Despite the proximity ...Dill(Anethum graveolens),an annual species,was used to study the impact of metallic pollution potentially spreading fromthe nickel smelter dump in Dolna Streda(Slovakia)by monitoring 55 elements.Despite the proximity of this dump(1 km),only soil Ni(54.8 mg/kg)or Pb(47.3 mg/kg),but not Cr,Mn,Fe or Co(main elements of the dump’s sludge)was elevated in given garden soil compared to two control sites.Mainly flowers and/or leaves contained significantly higher amounts of Ni,Cr,Pb,Cu,As,Sb,Sn,V,W,and some rare earth elements at the site close to the dump.Correlation between elements in organs and soil was significant mainly in stem or root but the bioaccumulation factor was typically low(<0.02)for most elements.A positive finding was that the 2022/2024 comparison revealed a decline in most elements in dill leaves,even at the dump site,which may reflect a decrease in the content of air PM particles.Soluble phenols were less accumulated in plants close to the nickel smelter dump,but flavonols showed the opposite trend,and free amino acids were positively correlated with many elements in the stem and root.An evaluation of commercial dill samples revealed variability(e.g.,up to 0.7 mg Cd/kg dry weight)but subsequent NCA and PCA analyses clearly separated the dump locality from other samples.However,significant differences in the content of Cd,Ni,Pb,As,and other elements encourage precise control of commercially available dill dry matter.展开更多
The present study was conducted to examine the trophic transfer of potentially toxic elements(PTEs)in a closed arsenic mine.Eight PTEs in a soil-plant-leaf litter-earthworm-top predators(free-range local chicken and w...The present study was conducted to examine the trophic transfer of potentially toxic elements(PTEs)in a closed arsenic mine.Eight PTEs in a soil-plant-leaf litter-earthworm-top predators(free-range local chicken and wild passerine bird)system were analyzed for nitrogen and carbon stable isotopes,PTE concentrations,bioaccumulation factors(BAFs),and transfer factors(TFs).The PTE concentrations in soils from mining areas were generally higher than a adjacent controlled area,with As and Cd in soils showing the prominent compared to other six PTEs,as seen for the indices of geo-accumulation index(I_(geo)),pollution index(PI)and potential ecological risk index(RI).The relatively high BAF and TF values suggested a distinct biotransfer of PTEs along the soil-plant-leaf litter-earthworm system.BAFs were mostly<1 except in earthworms,indicating that earthworms had a strong capacity to take up these metals.The TFs varied both among PTEs and organism’s species,e.g.,the transfer capacities of As in Pteris vittata and Pteris cretica,Cd in Miscanthus sinensis,and Pb,Cr and Mn in moss were the highest.For local free-range chicken and wild passerine bird,the concentrations of PTEs were higher in gastric contents and feather than in internal tissue(stomach,liver and heart),with lower contents in muscle and egg.Bioaccumulation of PTEs generally decreased from decomposer earthworms,to primary producer plants,to top predator,indicating a potential bio-dilution tendency in higher trophic levels in the terrestrial food chain.展开更多
Persistent halogenated organic pollutants(HOPs)are globally concerned owing to their persistence,bioaccumulation,and potential toxicity to aquatic organisms.The trophic transfer of HOPs can affect their toxic effects ...Persistent halogenated organic pollutants(HOPs)are globally concerned owing to their persistence,bioaccumulation,and potential toxicity to aquatic organisms.The trophic transfer of HOPs can affect their toxic effects on both humans and ecosystems.Previous studies mostly focused on HOPs biomagnification within specific regional or ecosystem contexts,however,the variation in trophicmagnification factors(TMFs)among different HOPs across a spectrum of diverse aquatic systems globally remains unclear.By collating literatures encompassing TMFs of polychlorinated biphenyls(PCBs),polybrominated diphenyl ethers(PBDEs),or perfluoroalkyl acids(PFAAs)along invertebrate–fish food webs on a global scale,our analysis revealed that Asia,North America,and Europe exhibited the highest pollution levels of HOPs.PCBs were found to have the highest trophicmagnification capability(TMF=3.14),followed by PBDEs(TMF=2.48)and PFAAs(TMF=1.97).TMF values and the probability of TMF exceeding 1 for PCB,PBDE and PFAA congeners showed a parabolic relationship with halogenation degree and carbon chain length.Specifically,PCBswith 6 chlorines,PBDEs with 5 bromines,and PFAAs with 12 carbons exhibited maximum trophic transfer capability and potential along food webs.Fractionation of PCBs and PFAAs was observed,with the proportions of higher chlorination degree and longer chain PFAAs increasing while the others decreased with trophic levels.Surprisingly,we also found a positive relationship between site latitude and TMF values of HOP congeners.This study provides a valuable basis for gauging ecological and health risks of HOPs,facilitating the development of robust standards for aquatic environment management.展开更多
【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechan...【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.展开更多
This study investigates the variations of microcystins(MCs)in water,cyanobacterial blooms,sediment,and aquatic organisms collected from the Dau Tieng Reservoir(DTR).Vietnam.Highperformance liquid chromatography(HPLC)w...This study investigates the variations of microcystins(MCs)in water,cyanobacterial blooms,sediment,and aquatic organisms collected from the Dau Tieng Reservoir(DTR).Vietnam.Highperformance liquid chromatography(HPLC)was employed to measure MC concentrations in various target samples.Results indicate that Microcystis spp.dominates as the primary MC producer in the DTR.The average concentrations of analyzed MCs in surface water ranged from 1.10 to 5.54μg/L,temporally and spatially.In sediment,average concentrations varied from 0.15 to 1.13μg/g wet weight(WW)temporally and from 0.41 to 0.72μg/g WW spatially.MCs were detected in different organs of fish species(Oreochromis sp.and Labiobarbus sp.)and in the entire soft tissues of bivalve(Corbicula sp.)and gastropod(Assiminea sp.).The highest observed MC concentration in July was 0.83±0.22μg/g WW in the intestines of fish Oreochromis sp.The presence of MCs in grass shrimp Palaemonetes sp.was observed solely in June,reaching a concentration of 0.28±0.19μg/g WW.This is the first report of MC accumulation in the grass shrimp Palaemonetes sp.during field collection.For the bivalve Corbicula sp.,the presence of analyzed MCs was consistent throughout the study period,except for March and September,with the highest concentrations in July at 0.77±0.1μg/g WW.Pearson correlation analysis revealed significant positive correlations between MCs in water and sediment with MC concentrations in aquatic animals,indicating the potential transfer of MCs across different trophic levels.The estimated daily intake values for analyzed MCs indicate that fish collected from the DTR are considered safe for consumption,as long as only the edible organs,such as the muscle,are consumed.However,bivalves or gastropods collected from the DTR are not safe for human consumption.This study underscored the importance of monitoring MC accumulation in aquatic animals used as food to mitigate adverse effects on human health.展开更多
Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water,which are often enriched with arsenic(As).How-ever,the transfer and fate of As during the ...Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water,which are often enriched with arsenic(As).How-ever,the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear.Based on the simulated ecosystem experiment,the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated.Microcystis aeruginosa showed high tolerance to As(V).The accumulation of As in different tissues of silver carp was different,as follows:intestine>liver>gill>skin>muscle.After silver carp ingested As-rich Microcystis aeruginosa,As accumulation in the intestine,liver,gill,and skin of silver carp was enhanced under the action of digestion and skin contact.Compared with the system without algal,As accumulation in the intestine,liver,gill,and skin of silver carp increased by 1.1,3.3,3.3,and 9.6 times,respectively,after incubation for 30 days in the system with Microcystis aeruginosa,while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg.This work revealed the transfer and fate of As during algal control by silver carp,elucidated the accumulation mechanism of As in water-algae-silver carp system,enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water,and provided a scientific basis for as-sessing and predicting As migration and enrichment in water-algae-silver carp system.展开更多
Zeolite imidazole frameworks(ZIFs),a class of the metal organic framework,have been extensively studied in environmental applications.However,their environmental fate and potential ecological impact on plants remain u...Zeolite imidazole frameworks(ZIFs),a class of the metal organic framework,have been extensively studied in environmental applications.However,their environmental fate and potential ecological impact on plants remain unknown.Here,we investigated the phytotoxicity,transformation,and bioaccumulation processes of two typical ZIFs(ZIF-8 and ZIF-67)in rice(Oryza sativa L.)under hydroponic conditions.ZIF-8 and ZIF-67 in the concentration of 50 mg/L decreased root and shoot dry weight maximally by 55.2%and 27.5%,53.5%and 37.5%,respectively.The scanning electron microscopy(SEM)imaging combined with X-ray diffraction(XRD)patterns revealed that ZIFs on the root surface gradually collapsed and transformed into nanosheets with increasing cultivation time.The fluorescein isothiocyanate(FITC)labeled ZIFs were applied to trace the uptake and translocation of ZIFs in rice.The results demonstrated that the transformed ZIFs were mainly distributed in the intercellular spaces of rice root,while they cannot be transported to culms and leaves.Even so,the Co and Zn contents of rice roots and shoots in the ZIFs treated groups were increased by 1145%and 1259%,145%and 259%,respectively,compared with the control groups.These findings suggested that the phytotoxicity of ZIFs are primarily attributed to the transformed ZIFs and to a less extent,the metal ions and their ligands,and they were internalized by rice root and increased the Co and Zn contents of shoots.This study reported the transformation of ZIFs and their biological effectiveness in rice,highlighting the potential environmental hazards and risks of ZIFs to crop plants.展开更多
In the Democratic Republic of Congo,the Kafubu River has received,for several decades,mining waste from GECAMINE Kipushi and Lubumbashi as well as those from the CHEMAF plant.Given this situation,we wanted to verify t...In the Democratic Republic of Congo,the Kafubu River has received,for several decades,mining waste from GECAMINE Kipushi and Lubumbashi as well as those from the CHEMAF plant.Given this situation,we wanted to verify the degree of contamination of fish in the Kafubu River with TME(Trace Metal Elements).In doing so,fish samples from this river,downstream of mining activities,as well as samples of reference fish from upstream of any mining activity from the sources of the Panda and Kasungwe rivers and that of the Congo River were analyzed with Inductively Couple Plasma Mass Spectrometry(ICP-MS)and Inductively Couple Plasma Optical Emission Spectroscopy(ICP-OES).Statistical analysis,using the Wilcoxon test,of the results obtained as well as the comparison of these with the thresholds of the WHO(World Health Organization),FAO(Food and Agriculture Organization)and the EU(European Union)revealed that the fish of the Kafubu River are contaminated with As,Cd,Co,Cu,Mn,Ni,Pb,Se and Zn.Thus,it was concluded that the fish of the Kafubu River were not fit for human consumption.In addition,because of the very high level of bioaccumulation of these TMEs in the fish of the Kafubu River,the latter have been described as poisonous for the consuming population.The main principle that emerges from this study is that fish from an ecosystem polluted by mining waste are not fit for human consumption.The results of this study will be brought to the attention of Decision-makers in the Haut-Katanga Province so that rigorous measures can be taken to prohibit metallurgical plants from dumping their mining waste into aquatic ecosystems.展开更多
The roads in correlation with the traffic linked to their existences are at the origin of the emission of numerous polluting substances likely to induce disturbances of the growth and the behavioral changes in the org...The roads in correlation with the traffic linked to their existences are at the origin of the emission of numerous polluting substances likely to induce disturbances of the growth and the behavioral changes in the organisms living in their vicinities. The purpose of this study is to analyze the growth and capacity accumulation of a common earthworm species (Millsonia omodeoi) in Cu, Cr, Ni, Pb and Zn in soils along a main road called “Autoroute du Nord” in C?te d’Ivoire. Thus, the earthworms were harvested in soils from a distance of 0 m (just after the sidewalk) to a distance of 200 m from the toll highway and in a control soil sampled in Lamto reserve (C?te d’Ivoire). The study was carried out in the soil laboratory at the ecological station of Lamto reserve. The Ford-Walford technique was used to determine the model and parameters most appropriated for describing the growth of earthworms. A pairwise comparison of the growth parameters was carried out using the Kruskal-Wallis test with the STATISTICA 7.1 software. The heavy metals contained in the cultivated soils and earthworms were detected and quantified using a Scanning Electron Micro-scope (MEB FEG Supra 40 VP Zeiss) and an Atomic Absorption Spectrometer SPECTRA 110 (VARIAN). The capacity accumulation of heavy metals in earthworm was determined by the bioaccumulation factor (BAF) calculation. The results of this study showed that Gompertz is the most appropriated model to describe the growth of M. omodeoi. The life cycle of M. omodeoi shows that this earthworm adopts a K type demographic strategy. Cu is the most accumulated heavy metals in M. omodeoi, when Cr is the least accumulated. Concerning heavy metal content in the earthworms, it decreases while moving away from the pavement. These results highlight a possibility of choice of M. omodeoi as 1) indicators of heavy metals pollution and 2) target of biological organisms for environmental impact studies.展开更多
Sixteen Scenedesmus species or strains have been employed to investigate the maximum capacity of nickel (Ni) accumulation in 10 mg/L Ni solution. The results showed that the capacity of accumulating Ni from aqueou...Sixteen Scenedesmus species or strains have been employed to investigate the maximum capacity of nickel (Ni) accumulation in 10 mg/L Ni solution. The results showed that the capacity of accumulating Ni from aqueous solution in 16 Scenedesmus species or strains showed the diversity. S. quadricauda freshwater algae culture collection of the Institute of Hydrobiology (FACHB) 44 and S. quadricauda FACHB 506 performed much more capacity of Ni accumulation than other species such as Scenedesmus sp. FACHB 416 and Scenedesmus sp. FACHB 489. Sequestration of Ni ions from aqueous solution was very efficient (26.7 mg Ni/g dry weight, in the 100 mg/L Ni solution) in S. quadricauda FACHB 44. The kinetics of Ni binding indicated that Ni bioaccumulation, in algal cell of S. quadricauda FACHB 44, possessed a rapid biosorption (5 min) and an slow bioaccumulation (2-3 h). More than 70% of Ni binding in algal cell were accumulated by biosorption and the remaining 20%-30% were bioaccumulated by energy_consumed transportation. It is much more higher ratio of energy_consumed transportation in S. quadricauda FACHB 44 than in other algae. Both the transmission electron microscope (TEM) and the energy_dispersive X_ray (EDX) microanalyses also revealed the different mechanisms of bioaccumulation in the various subcellular regions: a very fast adsorption in the cell wall; and a time_dependent absorption in protoplasm, specially in starch and chromatin.展开更多
The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture...The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture conditions. The diameter of colony, biomass ofP. chrysosporium, ligninolytic enzyme activities and bioaccumulation quantity of heavy metals were detected. The results indicated that Cd was more toxic than Pb to P. chrysosporium and the toxicity of Cd and Pb to P. chrysosporium was further strengthened under Cd+Pb combined pollution in different culture conditions. Heavy metals Cd and Pb had indirect influence on the production of ligninolytic enzymes by directly affecting the fungal growth and metabolic activity, and by another way in liquid culture. In addition, the results provided an evidence of the accumulation of Cd and Pb on the mycelia ofP. chrysosporium.展开更多
The development of Persistent Organic Pollutants(POPs) control policy in China in the context of international concerns on POPs was reviewed. The aspects of the Chinese POPs control strategies were analyzed, and compa...The development of Persistent Organic Pollutants(POPs) control policy in China in the context of international concerns on POPs was reviewed. The aspects of the Chinese POPs control strategies were analyzed, and compared with those of developed counterparts (e.g. US, EU, Japan). Currently, while the legal framework on POPs management, which complies with international guidelines has been established, it should be improved in the areas of special POPs management, risk assessment, the precautionary principle, life-cycle management and technical support capacity. The analysis of Chinese POPs policy and suggestions for strengthening the science-based decision making capacity are not only useful for Chinese decision-makers, but also a case study for developing world and make a great contribution for the global elimination of POPs to make a toxic-free future.展开更多
This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aer...This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snall.day), respectively. Mean survival rates of juveniles were higher than 90%, The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female.day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 μg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 μg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.展开更多
The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated.A pot experiment employing factorial design with two main effects of fertilizer and lead was conducte...The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated.A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium.Results showed that Pb was found in the root,stem,and seed capsule of kenaf but not in the leaf.Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb.In Pb-spike...展开更多
The Cr, Zn, Cu, Cd, Pb contents were determined in Cyprinus carpio Linnaeus, Carassius auratus Linnaeus, Hypophthalmichthys molitrix and Aristichthys nobilis, which were caught from Meiliang Bay, Taihu Lake, a large, ...The Cr, Zn, Cu, Cd, Pb contents were determined in Cyprinus carpio Linnaeus, Carassius auratus Linnaeus, Hypophthalmichthys molitrix and Aristichthys nobilis, which were caught from Meiliang Bay, Taihu Lake, a large, shallow and eutrophic lake of China. The results showed that: (1) the Cr, Cu, Pb, Cd contents in the edible parts of the four fish species were much lower than Chinese Food Health Criterion (1994), but the Zn contents were higher than the Criterion; (2) Cd contents were the highest in the liver of fish, Pb contents were almost the same in all organs of fish, Cr contents mainly enriched in the skin and gonads, Zn contents were the highest in the gonad (♀), and Cu contents were the highest in the liver; (3) the total metal accumulation was the greatest in the liver and the lowest in the muscle. The total metal accumulation was the highest in C. auratus L. This investigation indicated that fish products in Taihu Lake were still safe for human consumption, but the amount consumed should be controlled under the Chinese Food Health Criterion to avoid excessive intake of Zn.展开更多
Atrazine is a widely used herbicide for controlling weeds on both agricultural and nonagricultural land,which is equally detected in water supplies beyond safe concentrations.Although the presence of atrazine metaboli...Atrazine is a widely used herbicide for controlling weeds on both agricultural and nonagricultural land,which is equally detected in water supplies beyond safe concentrations.Although the presence of atrazine metabolites is an indication of herbicide degradation,some of them still exhibit toxicity,greater water solubility and weaker interaction with soil components than atrazine.Hence,studies with atrazine in the environment are of interest because of its potential to contaminate drinking water sources.Data on atrazine availability for transport,plant uptake,and microbial degradation and mineralization are therefore required to perform more comprehensive and realistic environmental risk assessments of its environmental fate.This review presents an account of the sorption-desorption phenomenon of atrazine on soil and other sorbents by revisiting the several mechanisms of atrazine-sorbent binding reported in the literature.The retention and transport of atrazine in soils;the influence of organic matter on atrazine sorption;the interactions of atrazine with humic substances,atrazine uptake by plants,atrazine bioccumulation and microbial degradation;atrazine transformation in composting environments;and finally atrazine removal by biosorption are discussed.展开更多
Dietary uptake is the major way that inorganic arsenic(iAs)enters into benthic fish;however,the metabolic process of dietborne i As in fish muscle following chronic exposure remains unclear.This was a 40-day study on ...Dietary uptake is the major way that inorganic arsenic(iAs)enters into benthic fish;however,the metabolic process of dietborne i As in fish muscle following chronic exposure remains unclear.This was a 40-day study on chronic dietborne i As[arsenite(AsⅢ)and arsenate(AsⅤ)]exposure in the benthic freshwater food fish,the crucian carp(Carassius auratus),which determined the temporal profiles of iAs metabolism and toxicokinetics during exposure.We found that an adaptive response occurred in the fish body after iAs dietary exposure,which was associated with decreased As accumulation and increased As transformation into a non-toxic As form(arsenobetaine).The bioavailability of dietary AsⅢwas lower than that of AsⅤ,probably because AsⅢhas a lower ability to pass through fish tissues.Dietary AsⅤexhibited a high potential for transformation into AsⅢspecies,which then accumulated in fish muscle.The largely produced AsⅢconsidered more toxic at the earlier stage of AsⅤexposure should attract sufficient attention to human exposure assessment.Therefore,the pristine As species and exposure duration had significant effects on As bioaccumulation and biotransformation in fish.The behavior determined for dietborne arsenic in food fish is crucial for not only arsenic ecotoxicology but also food safety.展开更多
文摘PBDEs are widely used brominated flame retardant, which are increasingly reported in the environment. Concentrations of thirteen PBDEs in a large number of channel catfish and fish feeds collected from Hubei province of China were investigated in this study. A fast isotopic dilution GC-MS method was firstly developed to simultaneously determine thirteen PBDEs in channel catfish and fish feeds in this study, and especially for the first time PBDEs in fish feeds. Pressurized liquid extraction and multi-layer silica gel column chromatography cleanup were used, some important steps and crucial parameters were modified and intensified compared with other literatures, and GC and MS conditions were optimized. The limits of quantitation values of 0.25 - 5 μg·kg-1 wet weight in channel catfish were calculated for PBDEs;so did 1 - 20 μg·kg-1 wet weight in fish feeds. In addition, good repeatability and accuracy of the whole method were achieved. The established methods were therefore suitable for the simultaneous determinations of thirteen PBDEs in these samples at trace contamination levels. Using the established methods, PBDEs emerged in 10 of 180 channel catfish and 13 of 115 fish feeds, and the dominant PBDEs homologues were PBDE-28, PBDE-47, PBDE-100, PBDE-99, PBDE-154, PBDE-153 and PBDE-183. The detection rates of seven PBDEs congeners were in turn respectively 1.74%, 7.83%, 4.35%, 5.22%, 3.48%, 2.61% and 2.61% in fish feeds, and detection rates of seven PBDEs congeners were in turn respectively 1.11%, 3.89%, 2.22%, 1.67%, 1.11%, 1.11% and 1.11% in channel catfish. There was significant correlation in PBDEs between matching channel catfish and fish feeds (R2 = 0.742, P < 0.001, n = 30), suggesting that fish feeds contaminated with PBDEs possibly resulted in PBDEs residual in channel catfish through biological transfer.
文摘The present study examines the toxicological effects and bioaccumulation of strontium(Sr^(2+))in two Moroccan wheat species,Triticum durum(Nachit)and Triticum aestivum(Ibtissam).Germination rates and seedling growth parameters were evaluated under Sr^(2+)concentrations of 0,10,100,and 1000 mM.Results revealed a significant decline in germination rates as Sr^(2+)concentrations increased,with T.aestivum showing higher sensitivity compared to T.durum.Low Sr^(2+)concentrations(10 mM)initially promoted stem growth in T.aestivum,but growth declined sharply at higher concentrations.Both species sustained growth at moderate Sr^(2+)concentrations(100 mM),but experienced a substantial reduction at 1000 mM,with T.durum demonstrating slightly better tolerance.Elevated Sr^(2+)concentrations notably affected root length and stem branching,indicating severe phytotoxic effects.Enzyme activity assays showed that at low Sr^(2+)concentration(10 mM),GST,CAT,POD,and SOD activities were similar to the control.At moderate concentrations(100 mM),GST and POD activities increased,suggesting enhanced detoxification.At high concentrations(1000 mM),all enzyme activities were significantly elevated,reflecting a robust antioxidative defense mechanism.This study provides valuable insights into the toxicological impacts and physiological responses of these wheat species to Sr^(2+)stress.
基金supported by the National Key Research and Development Program of China(No.2020YFC1808204)the National Natural Science Foundation of China(Nos.22206001 and U22A20406)the Scientific Research Foundation of Education Department of Anhui Province of China(No.KJ2021A0074).
文摘Nanoplastics are emerging contaminants that may co-exist with organochlorine pesticides and adversely affect invertebrates in the environment.However,the impact of environmental aging on the combined toxicity of nanoplastics and organochlorine pesticides remains unclear.This study investigated the effects of aging on the combined toxicity of polystyrene nanoplastics(PS NPs)and chlordane against Caenorhabditis elegans.The results showed that photo-aging altered the physicochemical properties of PS NPs and promoted the combined toxicity of PS NPs and chlordane to nematodes by reducing survival rate,body length and enhancing germline apoptosis.Additionally,combined exposure of nematodes to aged PS NPs and chlordane significantly increased reactive oxygen species production and intestinal permeability,suggesting that aging enhances combined toxicity through oxidative stress and intestinal damage.Moreover,aging increased chlordane contents in nematodes without promoting PS NPs accumulation,potentially leading to increased combined toxicity of PS NPs and chlordane.Notably,aging significantly increased the accumulation of PS NPs in the posterior intestine of the nematode during co-exposure,which may be responsible for the most sensitive and highest degree of change in germline apoptosis.These observations emphasize the significance of accounting for environmental aging as well as the accumulation and distribution of nanoplastics in organisms when assessing the combined effects of nanoplastics and coexisting pollutants.
基金supported by the Slovak grant agency VEGA(project no 1/0003/21)analyses of foreign co-authors also by internal sources(grant no.SGS_2025_001)of their workplaces.
文摘Dill(Anethum graveolens),an annual species,was used to study the impact of metallic pollution potentially spreading fromthe nickel smelter dump in Dolna Streda(Slovakia)by monitoring 55 elements.Despite the proximity of this dump(1 km),only soil Ni(54.8 mg/kg)or Pb(47.3 mg/kg),but not Cr,Mn,Fe or Co(main elements of the dump’s sludge)was elevated in given garden soil compared to two control sites.Mainly flowers and/or leaves contained significantly higher amounts of Ni,Cr,Pb,Cu,As,Sb,Sn,V,W,and some rare earth elements at the site close to the dump.Correlation between elements in organs and soil was significant mainly in stem or root but the bioaccumulation factor was typically low(<0.02)for most elements.A positive finding was that the 2022/2024 comparison revealed a decline in most elements in dill leaves,even at the dump site,which may reflect a decrease in the content of air PM particles.Soluble phenols were less accumulated in plants close to the nickel smelter dump,but flavonols showed the opposite trend,and free amino acids were positively correlated with many elements in the stem and root.An evaluation of commercial dill samples revealed variability(e.g.,up to 0.7 mg Cd/kg dry weight)but subsequent NCA and PCA analyses clearly separated the dump locality from other samples.However,significant differences in the content of Cd,Ni,Pb,As,and other elements encourage precise control of commercially available dill dry matter.
基金supported by the National Natural Science Foundation of China(Nos.41907325 and 41571470).
文摘The present study was conducted to examine the trophic transfer of potentially toxic elements(PTEs)in a closed arsenic mine.Eight PTEs in a soil-plant-leaf litter-earthworm-top predators(free-range local chicken and wild passerine bird)system were analyzed for nitrogen and carbon stable isotopes,PTE concentrations,bioaccumulation factors(BAFs),and transfer factors(TFs).The PTE concentrations in soils from mining areas were generally higher than a adjacent controlled area,with As and Cd in soils showing the prominent compared to other six PTEs,as seen for the indices of geo-accumulation index(I_(geo)),pollution index(PI)and potential ecological risk index(RI).The relatively high BAF and TF values suggested a distinct biotransfer of PTEs along the soil-plant-leaf litter-earthworm system.BAFs were mostly<1 except in earthworms,indicating that earthworms had a strong capacity to take up these metals.The TFs varied both among PTEs and organism’s species,e.g.,the transfer capacities of As in Pteris vittata and Pteris cretica,Cd in Miscanthus sinensis,and Pb,Cr and Mn in moss were the highest.For local free-range chicken and wild passerine bird,the concentrations of PTEs were higher in gastric contents and feather than in internal tissue(stomach,liver and heart),with lower contents in muscle and egg.Bioaccumulation of PTEs generally decreased from decomposer earthworms,to primary producer plants,to top predator,indicating a potential bio-dilution tendency in higher trophic levels in the terrestrial food chain.
基金supported by the National Natural Science Foundation of China(Nos.T2421005,T2261129474,52039001,and 52270148).
文摘Persistent halogenated organic pollutants(HOPs)are globally concerned owing to their persistence,bioaccumulation,and potential toxicity to aquatic organisms.The trophic transfer of HOPs can affect their toxic effects on both humans and ecosystems.Previous studies mostly focused on HOPs biomagnification within specific regional or ecosystem contexts,however,the variation in trophicmagnification factors(TMFs)among different HOPs across a spectrum of diverse aquatic systems globally remains unclear.By collating literatures encompassing TMFs of polychlorinated biphenyls(PCBs),polybrominated diphenyl ethers(PBDEs),or perfluoroalkyl acids(PFAAs)along invertebrate–fish food webs on a global scale,our analysis revealed that Asia,North America,and Europe exhibited the highest pollution levels of HOPs.PCBs were found to have the highest trophicmagnification capability(TMF=3.14),followed by PBDEs(TMF=2.48)and PFAAs(TMF=1.97).TMF values and the probability of TMF exceeding 1 for PCB,PBDE and PFAA congeners showed a parabolic relationship with halogenation degree and carbon chain length.Specifically,PCBswith 6 chlorines,PBDEs with 5 bromines,and PFAAs with 12 carbons exhibited maximum trophic transfer capability and potential along food webs.Fractionation of PCBs and PFAAs was observed,with the proportions of higher chlorination degree and longer chain PFAAs increasing while the others decreased with trophic levels.Surprisingly,we also found a positive relationship between site latitude and TMF values of HOP congeners.This study provides a valuable basis for gauging ecological and health risks of HOPs,facilitating the development of robust standards for aquatic environment management.
基金Guangxi Natural Science Foundation(2024GXNSFAA010469,2021GXNSFBA196028)Science and Technology Development Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT137,Guinongke 2022JM86)。
文摘【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.
文摘This study investigates the variations of microcystins(MCs)in water,cyanobacterial blooms,sediment,and aquatic organisms collected from the Dau Tieng Reservoir(DTR).Vietnam.Highperformance liquid chromatography(HPLC)was employed to measure MC concentrations in various target samples.Results indicate that Microcystis spp.dominates as the primary MC producer in the DTR.The average concentrations of analyzed MCs in surface water ranged from 1.10 to 5.54μg/L,temporally and spatially.In sediment,average concentrations varied from 0.15 to 1.13μg/g wet weight(WW)temporally and from 0.41 to 0.72μg/g WW spatially.MCs were detected in different organs of fish species(Oreochromis sp.and Labiobarbus sp.)and in the entire soft tissues of bivalve(Corbicula sp.)and gastropod(Assiminea sp.).The highest observed MC concentration in July was 0.83±0.22μg/g WW in the intestines of fish Oreochromis sp.The presence of MCs in grass shrimp Palaemonetes sp.was observed solely in June,reaching a concentration of 0.28±0.19μg/g WW.This is the first report of MC accumulation in the grass shrimp Palaemonetes sp.during field collection.For the bivalve Corbicula sp.,the presence of analyzed MCs was consistent throughout the study period,except for March and September,with the highest concentrations in July at 0.77±0.1μg/g WW.Pearson correlation analysis revealed significant positive correlations between MCs in water and sediment with MC concentrations in aquatic animals,indicating the potential transfer of MCs across different trophic levels.The estimated daily intake values for analyzed MCs indicate that fish collected from the DTR are considered safe for consumption,as long as only the edible organs,such as the muscle,are consumed.However,bivalves or gastropods collected from the DTR are not safe for human consumption.This study underscored the importance of monitoring MC accumulation in aquatic animals used as food to mitigate adverse effects on human health.
基金supported by the National Natural Science Foundation of China(Nos.41572230 and 41172219)the Grant for Innovative Research Groups of the National Natural Sci-ence Foundation of China(No.41521001)+1 种基金the Special Scien-tific Research Project of Hanzhong City-Shaanxi University of Technology Co-construction State Key Laboratory(No.SXJ-2106)the Scientific Research Foundation of State Key Laboratory of Qinba Bio-Resource and Ecological Environment(No.SXC-2105).
文摘Silver carp mediated biological control techniques are often advocated for controlling cyanobacteria blooms in eutrophic water,which are often enriched with arsenic(As).How-ever,the transfer and fate of As during the biological control of cyanobacteria blooms by silver carp in As-rich eutrophic water remain unclear.Based on the simulated ecosystem experiment,the accumulation of As in silver carp and the transfer and fate of As in the water-algae-silver carp system during Microcystis aeruginosa blooms controlled by silver carp were investigated.Microcystis aeruginosa showed high tolerance to As(V).The accumulation of As in different tissues of silver carp was different,as follows:intestine>liver>gill>skin>muscle.After silver carp ingested As-rich Microcystis aeruginosa,As accumulation in the intestine,liver,gill,and skin of silver carp was enhanced under the action of digestion and skin contact.Compared with the system without algal,As accumulation in the intestine,liver,gill,and skin of silver carp increased by 1.1,3.3,3.3,and 9.6 times,respectively,after incubation for 30 days in the system with Microcystis aeruginosa,while the accumulation of As in the muscle was only slightly increased by 0.56 mg/kg.This work revealed the transfer and fate of As during algal control by silver carp,elucidated the accumulation mechanism of As in water-algae-silver carp system,enriched our understanding of As bioaccumulation and transformation in As-rich eutrophication water,and provided a scientific basis for as-sessing and predicting As migration and enrichment in water-algae-silver carp system.
基金This work was supported by the National Natural Science Foundation of China(Nos.30800705 and 31101599)the Provincial Natural Science Foundation of Zhejiang(Nos.LY15C150004 and LY18C150007)the Key Research and Devel opment Projects of Social Development of Jinhua Science and Technology Program(No.2021C22750).
文摘Zeolite imidazole frameworks(ZIFs),a class of the metal organic framework,have been extensively studied in environmental applications.However,their environmental fate and potential ecological impact on plants remain unknown.Here,we investigated the phytotoxicity,transformation,and bioaccumulation processes of two typical ZIFs(ZIF-8 and ZIF-67)in rice(Oryza sativa L.)under hydroponic conditions.ZIF-8 and ZIF-67 in the concentration of 50 mg/L decreased root and shoot dry weight maximally by 55.2%and 27.5%,53.5%and 37.5%,respectively.The scanning electron microscopy(SEM)imaging combined with X-ray diffraction(XRD)patterns revealed that ZIFs on the root surface gradually collapsed and transformed into nanosheets with increasing cultivation time.The fluorescein isothiocyanate(FITC)labeled ZIFs were applied to trace the uptake and translocation of ZIFs in rice.The results demonstrated that the transformed ZIFs were mainly distributed in the intercellular spaces of rice root,while they cannot be transported to culms and leaves.Even so,the Co and Zn contents of rice roots and shoots in the ZIFs treated groups were increased by 1145%and 1259%,145%and 259%,respectively,compared with the control groups.These findings suggested that the phytotoxicity of ZIFs are primarily attributed to the transformed ZIFs and to a less extent,the metal ions and their ligands,and they were internalized by rice root and increased the Co and Zn contents of shoots.This study reported the transformation of ZIFs and their biological effectiveness in rice,highlighting the potential environmental hazards and risks of ZIFs to crop plants.
文摘In the Democratic Republic of Congo,the Kafubu River has received,for several decades,mining waste from GECAMINE Kipushi and Lubumbashi as well as those from the CHEMAF plant.Given this situation,we wanted to verify the degree of contamination of fish in the Kafubu River with TME(Trace Metal Elements).In doing so,fish samples from this river,downstream of mining activities,as well as samples of reference fish from upstream of any mining activity from the sources of the Panda and Kasungwe rivers and that of the Congo River were analyzed with Inductively Couple Plasma Mass Spectrometry(ICP-MS)and Inductively Couple Plasma Optical Emission Spectroscopy(ICP-OES).Statistical analysis,using the Wilcoxon test,of the results obtained as well as the comparison of these with the thresholds of the WHO(World Health Organization),FAO(Food and Agriculture Organization)and the EU(European Union)revealed that the fish of the Kafubu River are contaminated with As,Cd,Co,Cu,Mn,Ni,Pb,Se and Zn.Thus,it was concluded that the fish of the Kafubu River were not fit for human consumption.In addition,because of the very high level of bioaccumulation of these TMEs in the fish of the Kafubu River,the latter have been described as poisonous for the consuming population.The main principle that emerges from this study is that fish from an ecosystem polluted by mining waste are not fit for human consumption.The results of this study will be brought to the attention of Decision-makers in the Haut-Katanga Province so that rigorous measures can be taken to prohibit metallurgical plants from dumping their mining waste into aquatic ecosystems.
文摘The roads in correlation with the traffic linked to their existences are at the origin of the emission of numerous polluting substances likely to induce disturbances of the growth and the behavioral changes in the organisms living in their vicinities. The purpose of this study is to analyze the growth and capacity accumulation of a common earthworm species (Millsonia omodeoi) in Cu, Cr, Ni, Pb and Zn in soils along a main road called “Autoroute du Nord” in C?te d’Ivoire. Thus, the earthworms were harvested in soils from a distance of 0 m (just after the sidewalk) to a distance of 200 m from the toll highway and in a control soil sampled in Lamto reserve (C?te d’Ivoire). The study was carried out in the soil laboratory at the ecological station of Lamto reserve. The Ford-Walford technique was used to determine the model and parameters most appropriated for describing the growth of earthworms. A pairwise comparison of the growth parameters was carried out using the Kruskal-Wallis test with the STATISTICA 7.1 software. The heavy metals contained in the cultivated soils and earthworms were detected and quantified using a Scanning Electron Micro-scope (MEB FEG Supra 40 VP Zeiss) and an Atomic Absorption Spectrometer SPECTRA 110 (VARIAN). The capacity accumulation of heavy metals in earthworm was determined by the bioaccumulation factor (BAF) calculation. The results of this study showed that Gompertz is the most appropriated model to describe the growth of M. omodeoi. The life cycle of M. omodeoi shows that this earthworm adopts a K type demographic strategy. Cu is the most accumulated heavy metals in M. omodeoi, when Cr is the least accumulated. Concerning heavy metal content in the earthworms, it decreases while moving away from the pavement. These results highlight a possibility of choice of M. omodeoi as 1) indicators of heavy metals pollution and 2) target of biological organisms for environmental impact studies.
文摘Sixteen Scenedesmus species or strains have been employed to investigate the maximum capacity of nickel (Ni) accumulation in 10 mg/L Ni solution. The results showed that the capacity of accumulating Ni from aqueous solution in 16 Scenedesmus species or strains showed the diversity. S. quadricauda freshwater algae culture collection of the Institute of Hydrobiology (FACHB) 44 and S. quadricauda FACHB 506 performed much more capacity of Ni accumulation than other species such as Scenedesmus sp. FACHB 416 and Scenedesmus sp. FACHB 489. Sequestration of Ni ions from aqueous solution was very efficient (26.7 mg Ni/g dry weight, in the 100 mg/L Ni solution) in S. quadricauda FACHB 44. The kinetics of Ni binding indicated that Ni bioaccumulation, in algal cell of S. quadricauda FACHB 44, possessed a rapid biosorption (5 min) and an slow bioaccumulation (2-3 h). More than 70% of Ni binding in algal cell were accumulated by biosorption and the remaining 20%-30% were bioaccumulated by energy_consumed transportation. It is much more higher ratio of energy_consumed transportation in S. quadricauda FACHB 44 than in other algae. Both the transmission electron microscope (TEM) and the energy_dispersive X_ray (EDX) microanalyses also revealed the different mechanisms of bioaccumulation in the various subcellular regions: a very fast adsorption in the cell wall; and a time_dependent absorption in protoplasm, specially in starch and chromatin.
基金Projects(21477027,51278176)supported by the National Natural Science Foundation of ChinaProject(2014A020216048)supported by the Science and Technology Planning Project of Guangdong Province,ChinaProject(2015M582363)supported by the China Postdoctoral Science Foundation
文摘The responses of the growth and metabolism activity of Phanerochaete chrysosporium (P. chrysosporium) to cadmium (Cd), lead (Pb) and their combined pollution stress, were investigated in plate and liquid culture conditions. The diameter of colony, biomass ofP. chrysosporium, ligninolytic enzyme activities and bioaccumulation quantity of heavy metals were detected. The results indicated that Cd was more toxic than Pb to P. chrysosporium and the toxicity of Cd and Pb to P. chrysosporium was further strengthened under Cd+Pb combined pollution in different culture conditions. Heavy metals Cd and Pb had indirect influence on the production of ligninolytic enzymes by directly affecting the fungal growth and metabolic activity, and by another way in liquid culture. In addition, the results provided an evidence of the accumulation of Cd and Pb on the mycelia ofP. chrysosporium.
文摘The development of Persistent Organic Pollutants(POPs) control policy in China in the context of international concerns on POPs was reviewed. The aspects of the Chinese POPs control strategies were analyzed, and compared with those of developed counterparts (e.g. US, EU, Japan). Currently, while the legal framework on POPs management, which complies with international guidelines has been established, it should be improved in the areas of special POPs management, risk assessment, the precautionary principle, life-cycle management and technical support capacity. The analysis of Chinese POPs policy and suggestions for strengthening the science-based decision making capacity are not only useful for Chinese decision-makers, but also a case study for developing world and make a great contribution for the global elimination of POPs to make a toxic-free future.
基金supported by the National Natural Science Foundation of China (No.20677021)the Science Foundation of Jishou University (No.jsdxkyzz200101)
文摘This study aimed to develop original laboratory culture and sediment toxicity testing protocols for the freshwater gastropod Bellamya aeruginosa (Reeve), a new potential species for sediment toxicity testing. B. aeruginosa was successfully cultured with an effective culture system under proposed laboratory conditions. Optimal ad libitum feeding levels for larvae, juveniles, and adults were 2.0, 6.0, and 16.0 mg fish food/(snall.day), respectively. Mean survival rates of juveniles were higher than 90%, The snails could be sexed at 9 weeks of age, and their generation time is approximately 4 months. Reproduction continued all year around; the mean fecundity was 0.55 newborn/(female.day). The utility of this species for bioassays was evaluated in both 10-day and 28-day case studies with artificial sediments. The 10-day LC50 of Cu for larvae was 480 μg/g dry weight (dw), and the lowest observed effects concentration of Cu for survival and growth of larvae was 195 μg/g dw. Survival and growth are reliable indicators of acute toxicity. Larvae accumulated more Cu than adults. B. aeruginosa exhibited a higher sensitivity to Cu exposure than standard test species (Hyalella azteca and Chironomus tentans). The 28-day test of sediment toxicity with adults showed that fecundity was a robust endpoint indicator of reproductive toxicity, and the biochemical endpoints of superoxide dismutase, catalase, and glutathione could be used as sensitive biomarkers for Cu-induced oxidative damage. B. aeruginosa can be therefore recommended as a candidate for the standardization of the freshwater sediment toxicity test protocol.
基金the Forest Research Institute Malaysia (TGP 40300402009 and 40310304003)the ASEAN-Korea Environmental Cooperation Project (AKECOP) for financial support
文摘The potential of kenaf (Hibiscus cannabinus L.) for phytoremediation of lead (Pb) on sand tailings was investigated.A pot experiment employing factorial design with two main effects of fertilizer and lead was conducted in a nursery using sand tailings from an ex-tin mine as the growing medium.Results showed that Pb was found in the root,stem,and seed capsule of kenaf but not in the leaf.Application of organic fertilizer promoted greater biomass yield as well as higher accumulation capacity of Pb.In Pb-spike...
基金Projects supported by the National Natural Science Foundation of China(No.40673078,40203007).
文摘The Cr, Zn, Cu, Cd, Pb contents were determined in Cyprinus carpio Linnaeus, Carassius auratus Linnaeus, Hypophthalmichthys molitrix and Aristichthys nobilis, which were caught from Meiliang Bay, Taihu Lake, a large, shallow and eutrophic lake of China. The results showed that: (1) the Cr, Cu, Pb, Cd contents in the edible parts of the four fish species were much lower than Chinese Food Health Criterion (1994), but the Zn contents were higher than the Criterion; (2) Cd contents were the highest in the liver of fish, Pb contents were almost the same in all organs of fish, Cr contents mainly enriched in the skin and gonads, Zn contents were the highest in the gonad (♀), and Cu contents were the highest in the liver; (3) the total metal accumulation was the greatest in the liver and the lowest in the muscle. The total metal accumulation was the highest in C. auratus L. This investigation indicated that fish products in Taihu Lake were still safe for human consumption, but the amount consumed should be controlled under the Chinese Food Health Criterion to avoid excessive intake of Zn.
文摘Atrazine is a widely used herbicide for controlling weeds on both agricultural and nonagricultural land,which is equally detected in water supplies beyond safe concentrations.Although the presence of atrazine metabolites is an indication of herbicide degradation,some of them still exhibit toxicity,greater water solubility and weaker interaction with soil components than atrazine.Hence,studies with atrazine in the environment are of interest because of its potential to contaminate drinking water sources.Data on atrazine availability for transport,plant uptake,and microbial degradation and mineralization are therefore required to perform more comprehensive and realistic environmental risk assessments of its environmental fate.This review presents an account of the sorption-desorption phenomenon of atrazine on soil and other sorbents by revisiting the several mechanisms of atrazine-sorbent binding reported in the literature.The retention and transport of atrazine in soils;the influence of organic matter on atrazine sorption;the interactions of atrazine with humic substances,atrazine uptake by plants,atrazine bioccumulation and microbial degradation;atrazine transformation in composting environments;and finally atrazine removal by biosorption are discussed.
基金the Special Fund for AgroScientific Research in the Public Interest of China(No.201503108)the Science and Technology Project of Hunan Province(No.2017WK2091)。
文摘Dietary uptake is the major way that inorganic arsenic(iAs)enters into benthic fish;however,the metabolic process of dietborne i As in fish muscle following chronic exposure remains unclear.This was a 40-day study on chronic dietborne i As[arsenite(AsⅢ)and arsenate(AsⅤ)]exposure in the benthic freshwater food fish,the crucian carp(Carassius auratus),which determined the temporal profiles of iAs metabolism and toxicokinetics during exposure.We found that an adaptive response occurred in the fish body after iAs dietary exposure,which was associated with decreased As accumulation and increased As transformation into a non-toxic As form(arsenobetaine).The bioavailability of dietary AsⅢwas lower than that of AsⅤ,probably because AsⅢhas a lower ability to pass through fish tissues.Dietary AsⅤexhibited a high potential for transformation into AsⅢspecies,which then accumulated in fish muscle.The largely produced AsⅢconsidered more toxic at the earlier stage of AsⅤexposure should attract sufficient attention to human exposure assessment.Therefore,the pristine As species and exposure duration had significant effects on As bioaccumulation and biotransformation in fish.The behavior determined for dietborne arsenic in food fish is crucial for not only arsenic ecotoxicology but also food safety.