期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Graph Ranked Clustering Based Biomedical Text Summarization Using Top k Similarity
1
作者 Supriya Gupta Aakanksha Sharaff Naresh Kumar Nagwani 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期2333-2349,共17页
Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informati... Text Summarization models facilitate biomedical clinicians and researchers in acquiring informative data from enormous domain-specific literature within less time and effort.Evaluating and selecting the most informative sentences from biomedical articles is always challenging.This study aims to develop a dual-mode biomedical text summarization model to achieve enhanced coverage and information.The research also includes checking the fitment of appropriate graph ranking techniques for improved performance of the summarization model.The input biomedical text is mapped as a graph where meaningful sentences are evaluated as the central node and the critical associations between them.The proposed framework utilizes the top k similarity technique in a combination of UMLS and a sampled probability-based clustering method which aids in unearthing relevant meanings of the biomedical domain-specific word vectors and finding the best possible associations between crucial sentences.The quality of the framework is assessed via different parameters like information retention,coverage,readability,cohesion,and ROUGE scores in clustering and non-clustering modes.The significant benefits of the suggested technique are capturing crucial biomedical information with increased coverage and reasonable memory consumption.The configurable settings of combined parameters reduce execution time,enhance memory utilization,and extract relevant information outperforming other biomedical baseline models.An improvement of 17%is achieved when the proposed model is checked against similar biomedical text summarizers. 展开更多
关键词 Biomedical text summarization UMLS biobert SDPMM clustering top K similarity PPF HITS page rank graph ranking
暂未订购
基于多源异构信息融合的肺癌专病知识图谱构建研究
2
作者 雒增月 尹裴 《建模与仿真》 2025年第10期28-38,共11页
肺癌是全球重大公共卫生挑战。医学知识图谱(MKG)可为智能诊疗提供关键支持,但现有图谱常面临信息源单一、覆盖不全、缺乏真实案例等问题。为此,本研究融合MIMIC-IV电子病历、DrugBank、PubMed、ICD-10等多源异构数据,构建肺癌专病知识... 肺癌是全球重大公共卫生挑战。医学知识图谱(MKG)可为智能诊疗提供关键支持,但现有图谱常面临信息源单一、覆盖不全、缺乏真实案例等问题。为此,本研究融合MIMIC-IV电子病历、DrugBank、PubMed、ICD-10等多源异构数据,构建肺癌专病知识图谱。创新性地采用模块化子图融合方法:先构建患者、疾病、药物三个子图,再通过实体对齐融合为总图谱。实验验证:1)基于微调BioBERT的医疗实体识别模型性能优于基线;2)利用TransE/TransH生成的图谱嵌入在药物/手术预测任务中,Top-3和Top-5命中率均≥92%。该图谱为肺癌临床决策提供了可靠知识支撑,其构建框架为多源医学数据融合与知识图谱构建提供了可复用的参考方案。 展开更多
关键词 肺癌 知识图谱构建 多源信息融合 biobert模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部