Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes.The complex nature of these conditions demands precise and quantitative monitor...Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes.The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous,real-time manner.Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites,dependence on clinician expertise,and prolonged and recurrent interventions.Bio-integrated electronics for chemical sensing is an emerging,multidisciplinary field enabled by rapid advances in electrical engineering,biosensing,materials science,analytical chemistry,and biomedical engineering.This review presents an overview of recent progress in bio-integrated electrochemical sensors,with an emphasis on their relevance to neuroengineering and neuro-modulation.It traverses vital neurological biomarkers and explores bio-recognition elements,sensing strategies,transducer designs,and wireless signal transmission methods.The integration of in vivo biochemical sensors is showcased through applications.The review concludes by outlining future trends and advancements in in vivo electrochemical sensing,and highlighting ongoing research and technological innovation,which aims to provide inspiring and practical instructions for future research.展开更多
Repair of large bone defects caused by severe trauma,non-union fractures,or tumor resection remains challenging because of limited regenerative ability.Typically,these defects heal through mixed routines,including int...Repair of large bone defects caused by severe trauma,non-union fractures,or tumor resection remains challenging because of limited regenerative ability.Typically,these defects heal through mixed routines,including intramembranous ossification(IMO)and endochondral ossification(ECO),with ECO considered more efficient.Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit.Herein,we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2(rhBMP-2),aiming to induce ECO-dominated repair.Specifically,we apply a mesoporous structure to accelerate iron chelation,this promoting early chondrogenesis via deferoxamine(DFO)-induced hypoxia-inducible factor-1α(HIF-1α).Through the delicate segmentation of click-crosslinked PEGylated Poly(glycerol sebacate)(PEGS)layers,we achieve programmed release of low-dose rhBMP-2,which can facilitate cartilage-to-bone transformation while reducing side effect risks.We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance.Collectively,these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing,paving a promising pave towards its clinical use in addressing large bone defects.展开更多
As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical def...As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.展开更多
Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or...Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.展开更多
Silicon(Si)has widely been used as an essential material in the modern semiconductor industry.Recently,new attempts have been actively made to apply Si to a variety of fields such as flexible electronic devices and bi...Silicon(Si)has widely been used as an essential material in the modern semiconductor industry.Recently,new attempts have been actively made to apply Si to a variety of fields such as flexible electronic devices and biosensors by manufacturing Si nanomembranes(NMs)having nanometer thickness.In particular,as the thickness of Si is reduced to a nanometer scale,its mechanical,electrical,and optical properties differ from that of its bulk form,which provides opportunities for the development of new conceptual devices.In this review,we present recent advances in Si NM technology that exhibit functional features different from the bulk materials.In addition,we discuss the opportunities and current challenges related to this field.展开更多
基金supported by The Ohio State University start-up funds and the Chronic Brain Injury Pilot Award Program at The Ohio State UniversityThis work was also supported by the Ohio State University Ma-terials Research Seed Grant Program,funded by the Center for Emergent Materials+2 种基金NSF-MRSEC,grant DMR-2011876the Center for Exploration of Novel Complex Materialsthe Institute for Materials Research.J.L.acknowledges the support from National Science Foundation award ECCS-2223387.
文摘Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes.The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous,real-time manner.Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites,dependence on clinician expertise,and prolonged and recurrent interventions.Bio-integrated electronics for chemical sensing is an emerging,multidisciplinary field enabled by rapid advances in electrical engineering,biosensing,materials science,analytical chemistry,and biomedical engineering.This review presents an overview of recent progress in bio-integrated electrochemical sensors,with an emphasis on their relevance to neuroengineering and neuro-modulation.It traverses vital neurological biomarkers and explores bio-recognition elements,sensing strategies,transducer designs,and wireless signal transmission methods.The integration of in vivo biochemical sensors is showcased through applications.The review concludes by outlining future trends and advancements in in vivo electrochemical sensing,and highlighting ongoing research and technological innovation,which aims to provide inspiring and practical instructions for future research.
基金supports from the National Natural Science Foundation of China(No.31971264)National Natural Science Foundation of China for Innovative Research Groups(No.51621002)+1 种基金Frontiers Science Center for Materiobiology and Dynamic Chemistry(No.JKVD1211002)China Postdoctoral Science Foundation(2020M681320).
文摘Repair of large bone defects caused by severe trauma,non-union fractures,or tumor resection remains challenging because of limited regenerative ability.Typically,these defects heal through mixed routines,including intramembranous ossification(IMO)and endochondral ossification(ECO),with ECO considered more efficient.Current strategies to promote large bone healing via ECO are unstable and require high-dose growth factors or complex cell therapy that cause side effects and raise expense while providing only limited benefit.Herein,we report a bio-integrated scaffold capable of initiating an early hypoxia microenvironment with controllable release of low-dose recombinant bone morphogenetic protein-2(rhBMP-2),aiming to induce ECO-dominated repair.Specifically,we apply a mesoporous structure to accelerate iron chelation,this promoting early chondrogenesis via deferoxamine(DFO)-induced hypoxia-inducible factor-1α(HIF-1α).Through the delicate segmentation of click-crosslinked PEGylated Poly(glycerol sebacate)(PEGS)layers,we achieve programmed release of low-dose rhBMP-2,which can facilitate cartilage-to-bone transformation while reducing side effect risks.We demonstrate this system can strengthen the ECO healing and convert mixed or mixed or IMO-guided routes to ECO-dominated approach in large-size models with clinical relevance.Collectively,these findings demonstrate a biomaterial-based strategy for driving ECO-dominated healing,paving a promising pave towards its clinical use in addressing large bone defects.
基金This work was in part supported by the International Partnership Program of Chinese Academy of Science(Grant No.154232KYSB20200016)the Suzhou Science and Technology Support Project(Grant No.SYG201905)+2 种基金the National Key Research and Development Program of China(Grant No.2020YFC2007400)H.C.acknowledges the supports provided by the National Science Foundation(NSF)(Grant No.ECCS-1933072)the National Heart,Lung,And Blood Institute of the National Institutes of Health under Award Number R61HL154215,and Penn State University.The partial support from the Center for Biodevices,the College of Engineering,and the Center for Security Research and Education at Penn State is also acknowledged.
文摘As the key component of wireless data transmission and powering,stretchable antennas play an indispensable role in flexible/stretchable electronics.However,they often suffer from frequency detuning upon mechanical deformations;thus,their applications are limited to wireless sensing with wireless transmission capabilities remaining elusive.Here,a hierarchically structured stretchable microstrip antenna with meshed patterns arranged in an arched shape showcases tunable resonance frequency upon deformations with improved overall stretchability.The almost unchanged resonance frequency during deformations enables robust on-body wireless communication and RF energy harvesting,whereas the rapid changing resonance frequency with deformations allows for wireless sensing.The proposed stretchable microstrip antenna was demonstrated to communicate wirelessly with a transmitter(input power of−3 dBm)efficiently(i.e.,the receiving power higher than−100 dBm over a distance of 100 m)on human bodies even upon 25%stretching.The flexibility in structural engineering combined with the coupled mechanical-electromagnetic simulations,provides a versatile engineering toolkit to design stretchable microstrip antennas and other potential wireless devices for stretchable electronics.
文摘Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover, neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.
基金support from the National Research Foundation of Korea(No.NRF-2015R1A3A2066337).
文摘Silicon(Si)has widely been used as an essential material in the modern semiconductor industry.Recently,new attempts have been actively made to apply Si to a variety of fields such as flexible electronic devices and biosensors by manufacturing Si nanomembranes(NMs)having nanometer thickness.In particular,as the thickness of Si is reduced to a nanometer scale,its mechanical,electrical,and optical properties differ from that of its bulk form,which provides opportunities for the development of new conceptual devices.In this review,we present recent advances in Si NM technology that exhibit functional features different from the bulk materials.In addition,we discuss the opportunities and current challenges related to this field.