We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method w...We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.展开更多
On the basis of clarifying and defining rural land transfer, the necessity of rural land transfer is analyzed. Land transfer is the necessity in terms of promoting agricultural scale operation and improving production...On the basis of clarifying and defining rural land transfer, the necessity of rural land transfer is analyzed. Land transfer is the necessity in terms of promoting agricultural scale operation and improving production efficiency; proving opportunities for narrowing urban and rural gap; realizing rural surplus labor transfer and facilitating urbanization. Major problems in the existing rural land transfer are analyzed:unclear laws and regulations and rural land transfer lacks relevant legal protection;rural social security system is imperfect and can not solve farmers' worries after land transfer; farmers and local governments are restricted by traditional ideas and it is hard to carry out the land transfer policies; rural system construction is relatively backward and the rural land transfer market is immature. Countermeasures on the governmental behaviors in rural land transfer are put forward: stipulating relevant administrative laws and regulations and perfecting the political system of rural land transfer; perfecting rural social security system and solving farmers' worries after land transfer; changing the ideas and working style of local officials and leading farmers to form the scientific land transfer outlook;and vigorously promoting the construction of system and positively cultivating rural land transfer market.展开更多
Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green func...Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.展开更多
A self-adaptive precise algorithm in the time domain was employed to solve 2-D nonlinear coupled heat and moisture transfer problems. By expanding variables at a discretized time interval, the variations of variables ...A self-adaptive precise algorithm in the time domain was employed to solve 2-D nonlinear coupled heat and moisture transfer problems. By expanding variables at a discretized time interval, the variations of variables can be described more precisely,and a nonlinear coupled initial and boundary value problem was converted into a series of recurrent linear boundary value problems which are solved by FE technique. In the computation, no additional assumption and the nonlinear iteration are required, and a criterion for self-adaptive computation is proposed to maintain sufficient computing accuracy for the change sizes of time steps. In the numerical comparison, the variations of material properties with temperature, moisture content, and both temperature and moisture content are taken into account, respectively. Satisfactory results have been obtained, indicating that the proposed approach is capable of dealing with complex nonlinear problems.展开更多
This paper emphasizes the urgency of solving the problems of farmers' employment under the condition of land transfer,indicating that solving the problems of farmers' employment is the necessary requirement of...This paper emphasizes the urgency of solving the problems of farmers' employment under the condition of land transfer,indicating that solving the problems of farmers' employment is the necessary requirement of land transfer,the actual requirement of constructing well-off society comprehensively,and the objective requirement of transforming developmental model.The characteristics of the problems of farmers' employment under the condition of land transfer are as follows:the rural surplus labor forces increase,and the ubiquitous unemployment is urgent;the employment room of farmers is narrow,and the structural unemployment is serious;the ability of farmers' employment is poor,and recessive unemployment has a large proportion;the situation of farmers' employment is not so sanguine,and the policy unemployment is frequent.This paper points out the causes of farmers' employment problems under the situation of land transfer as follows:in terms of analysis of subjective factors,farmers' self-employment ability is yet to be underpinned;in terms of analysis of objective factors,the relevant mechanism of government is unsound.Finally,corresponding countermeasures and suggestions are put forward as follows:establish the mechanism of farmer traceability analysis under the condition of land transfer;strengthen the training of farmers' skills;reinforce the publicity and education of farmers' employment concept;promote the process of urbanization and construct the employment vehicle of farmers;adjust the industrial structure in rural areas and expand the internal employment in rural areas;improve macro regulation and improve the employment environment for farmers.展开更多
Negative language transfer is a common phenomenon in Chinese college students 'English writing. Influenced by our native language, Chinese college students tend to apply Chinese language rules to English writing. ...Negative language transfer is a common phenomenon in Chinese college students 'English writing. Influenced by our native language, Chinese college students tend to apply Chinese language rules to English writing. This paper primarily focuses on the negative language transfer in College English writing. It tries to illustrate and analyze the negative language transfer in college students'English writing in terms of lexicon, syntax, discourse, and pragmatics. Based on the above analysis, it proceeds to put forward some suggestions on how to teach English writing effectively and efficiently.展开更多
In this paper, the linear complementary method for moving boundary problems with phase transformation is presented, in which a pair of unknown vectors of heat source with phase transforming and the temperature field c...In this paper, the linear complementary method for moving boundary problems with phase transformation is presented, in which a pair of unknown vectors of heat source with phase transforming and the temperature field can be solved exactly, and a large amount of iterative calculations can be avoided.展开更多
Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended g...Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.展开更多
Based on modified version of the Pennes' bio-heat transfer equation, a simplified one- dimensional bio-heat transfer model of the living tissues in the steady state has been applied on whole body heat transfer stu...Based on modified version of the Pennes' bio-heat transfer equation, a simplified one- dimensional bio-heat transfer model of the living tissues in the steady state has been applied on whole body heat transfer studies, and by using the Weierstrass' elliptic function, its corresponding analytic periodic and non-periodic solutions have been derived in this paper. Using the obtained analytic solutions, the effects of the thermal diffusivity, the temperature-inde- pendent perfusion component, and the temperature-dependent perfusion component in living tissues are analyzed numerically. The results show that the derived analytic solution is useful to easily and accurately study the thermal behavior of the biological system, and can be extended to applications such as parameter measurement, temperature field reconstruction and clinical treatment.展开更多
The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while fo...The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.展开更多
The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse he...The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.展开更多
The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dim...The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.展开更多
In this paper, a bio-heat transfer model of temperature distribution in human eye is discussed using appropriate boundary conditions for cornea and sclera. Variational finite element method with Crank-Nicolson scheme ...In this paper, a bio-heat transfer model of temperature distribution in human eye is discussed using appropriate boundary conditions for cornea and sclera. Variational finite element method with Crank-Nicolson scheme is used to calculate the transient temperature distribution in normal human eye. The temperature with and without the effect of blood perfusion and metabolism on retina is simulated and compared for various ambient temperatures, evaporation rates and lens thermal conductivities. The obtained results are compared with experimental results and past results found in literatures. The results show that the steady state corneal temperature is achieved in around 31 and 45 minute of exposure at ambient temperatures 10℃ and 50℃ respectively. Steady state eye temperature is achieved earlier at higher evaporation rate. Similar result is achieved for higher lens thermal conductivity and also for lower ambient temperature.展开更多
The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and the...The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters.展开更多
As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimat...As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m^2·℃), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.展开更多
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor...Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods.展开更多
Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in t...Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure.展开更多
Using the inverse algorithm of heat transfer and the nonlinear estimation method, matching calculated values with measured ones, the interfacial heat transfer coefficient at casting/Cu mould interface was determined.T...Using the inverse algorithm of heat transfer and the nonlinear estimation method, matching calculated values with measured ones, the interfacial heat transfer coefficient at casting/Cu mould interface was determined.The results show that the interfacial heat transfer coefficient at Al/Cu interface changes in a range of 4.0×10 3 1.0×10 5 W·m -2 ·K -1 and its average value is in a range of 5.0×10 37.0×10 3 W·m -2 ·K -1 .展开更多
A similarity analysis for Marangoni convection induced flow over a vapor-liquid interface due to an imposed temperature gradient was carried out. The analysis assumes that the surface tension varies linearly with temp...A similarity analysis for Marangoni convection induced flow over a vapor-liquid interface due to an imposed temperature gradient was carried out. The analysis assumes that the surface tension varies linearly with temperature but the temperature variation is a power law function of the location. The similarity solutions are presented numerically and the associated transfer characteristics are discussed.展开更多
Nonlinear nonstationary heat conduction problem for infinite circular cylinder under a complex heat transfer taking into account the temperature dependence of thermophysical characteristics of materials is solved nume...Nonlinear nonstationary heat conduction problem for infinite circular cylinder under a complex heat transfer taking into account the temperature dependence of thermophysical characteristics of materials is solved numerically by the method of lines. Directing it to the Cauchy’s problem for systems of ordinary differential equations studied feature which takes place on the cylinder axis. Taken into account the dependence on the temperature coefficient of heat transfer that the different interpretation of its physical content makes it possible to consider both convective and convective-ray or heat ray. Using the perturbation method, the corresponding thermoelasticity problem taking into account the temperature dependence of mechanical properties of the material is construed. The influence of the temperature dependence of the material on the distribution of temperature field and thermoelastic state of infinite circular cylinder made of titanium alloy Ti-6Al-4V by radiant heat transfer through the outer surface has been analyzed.展开更多
文摘We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.
文摘On the basis of clarifying and defining rural land transfer, the necessity of rural land transfer is analyzed. Land transfer is the necessity in terms of promoting agricultural scale operation and improving production efficiency; proving opportunities for narrowing urban and rural gap; realizing rural surplus labor transfer and facilitating urbanization. Major problems in the existing rural land transfer are analyzed:unclear laws and regulations and rural land transfer lacks relevant legal protection;rural social security system is imperfect and can not solve farmers' worries after land transfer; farmers and local governments are restricted by traditional ideas and it is hard to carry out the land transfer policies; rural system construction is relatively backward and the rural land transfer market is immature. Countermeasures on the governmental behaviors in rural land transfer are put forward: stipulating relevant administrative laws and regulations and perfecting the political system of rural land transfer; perfecting rural social security system and solving farmers' worries after land transfer; changing the ideas and working style of local officials and leading farmers to form the scientific land transfer outlook;and vigorously promoting the construction of system and positively cultivating rural land transfer market.
基金Project supported by the National Natural Science Foundation of China (No. 50776097)
文摘Analytically solving a three-dimensional (3-D) bioheat transfer problem with phase change during a freezing process is extremely difficult but theoretically important. The moving heat source model and the Green function method are introduced to deal with the cryopreservation process of in vitro biomaterials. Exact solutions for the 3-D temperature transients of tissues under various boundary conditions, such as totally convective cooling, totally fixed temperature cooling and a hybrid between them on tissue surfaces, are obtained. Furthermore, the cryosurgical process in living tissues subject to freezing by a single or multiple cryoprobes is also analytically solved. A closed-form analytical solution to the bioheat phase change process is derived by considering contributions from blood perfusion heat transfer, metabolic heat generation, and heat sink of a cryoprobe. The present method is expected to have significant value for analytically solving complex bioheat transfer problems with phase change.
文摘A self-adaptive precise algorithm in the time domain was employed to solve 2-D nonlinear coupled heat and moisture transfer problems. By expanding variables at a discretized time interval, the variations of variables can be described more precisely,and a nonlinear coupled initial and boundary value problem was converted into a series of recurrent linear boundary value problems which are solved by FE technique. In the computation, no additional assumption and the nonlinear iteration are required, and a criterion for self-adaptive computation is proposed to maintain sufficient computing accuracy for the change sizes of time steps. In the numerical comparison, the variations of material properties with temperature, moisture content, and both temperature and moisture content are taken into account, respectively. Satisfactory results have been obtained, indicating that the proposed approach is capable of dealing with complex nonlinear problems.
文摘This paper emphasizes the urgency of solving the problems of farmers' employment under the condition of land transfer,indicating that solving the problems of farmers' employment is the necessary requirement of land transfer,the actual requirement of constructing well-off society comprehensively,and the objective requirement of transforming developmental model.The characteristics of the problems of farmers' employment under the condition of land transfer are as follows:the rural surplus labor forces increase,and the ubiquitous unemployment is urgent;the employment room of farmers is narrow,and the structural unemployment is serious;the ability of farmers' employment is poor,and recessive unemployment has a large proportion;the situation of farmers' employment is not so sanguine,and the policy unemployment is frequent.This paper points out the causes of farmers' employment problems under the situation of land transfer as follows:in terms of analysis of subjective factors,farmers' self-employment ability is yet to be underpinned;in terms of analysis of objective factors,the relevant mechanism of government is unsound.Finally,corresponding countermeasures and suggestions are put forward as follows:establish the mechanism of farmer traceability analysis under the condition of land transfer;strengthen the training of farmers' skills;reinforce the publicity and education of farmers' employment concept;promote the process of urbanization and construct the employment vehicle of farmers;adjust the industrial structure in rural areas and expand the internal employment in rural areas;improve macro regulation and improve the employment environment for farmers.
文摘Negative language transfer is a common phenomenon in Chinese college students 'English writing. Influenced by our native language, Chinese college students tend to apply Chinese language rules to English writing. This paper primarily focuses on the negative language transfer in College English writing. It tries to illustrate and analyze the negative language transfer in college students'English writing in terms of lexicon, syntax, discourse, and pragmatics. Based on the above analysis, it proceeds to put forward some suggestions on how to teach English writing effectively and efficiently.
文摘In this paper, the linear complementary method for moving boundary problems with phase transformation is presented, in which a pair of unknown vectors of heat source with phase transforming and the temperature field can be solved exactly, and a large amount of iterative calculations can be avoided.
文摘Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.
文摘Based on modified version of the Pennes' bio-heat transfer equation, a simplified one- dimensional bio-heat transfer model of the living tissues in the steady state has been applied on whole body heat transfer studies, and by using the Weierstrass' elliptic function, its corresponding analytic periodic and non-periodic solutions have been derived in this paper. Using the obtained analytic solutions, the effects of the thermal diffusivity, the temperature-inde- pendent perfusion component, and the temperature-dependent perfusion component in living tissues are analyzed numerically. The results show that the derived analytic solution is useful to easily and accurately study the thermal behavior of the biological system, and can be extended to applications such as parameter measurement, temperature field reconstruction and clinical treatment.
文摘The present work deals with the calculation of transition probability between two diabatic potentials coupled by any arbitrary coupling. The method presented in this work is applicable to any type of coupling while for numerical calculations we have assumed the arbitrary coupling as Gaussian coupling. This arbitrary coupling is expressed as a collection of Dirac delta functions and by the use of the transfer matrix technique the transition probability from one diabatic potential to another diabatic potential is calculated. We examine our approach by considering the case of two constant potentials coupled by Gaussian coupling as an arbitrary coupling.
文摘The accurate material physical properties, initial and boundary conditions are indispensable to the numerical simulation in the casting process, and they are related to the simulation accuracy directly. The inverse heat conduction method can be used to identify the mentioned above parameters based on the temperature measurement data. This paper presented a new inverse method according to Tikhonov regularization theory. A regularization functional was established and the regularization parameter was deduced, the Newton-Raphson iteration method was used to solve the equations. One detailed case was solved to identify the thermal conductivity and specific heat of sand mold and interfacial heat transfer coefficient (IHTC) at the meantime. This indicates that the regularization method is very efficient in decreasing the sensitivity to the temperature measurement data, overcoming the ill-posedness of the inverse heat conduction problem (IHCP) and improving the stability and accuracy of the results. As a general inverse method, it can be used to identify not only the material physical properties but also the initial and boundary conditions' parameters.
文摘The heat transfer coefficient in a multidimensional heat conduction problem is obtained from the solution of the inverse heat conduction problem based on the thermographic temperature measurement. The modified one-dimensional correction method (MODCM), along with the finite volume method, is employed for both two- and three-dimensional inverse problems. A series of numerical experiments are conducted in order to verify the effectiveness of the method. In addition, the effect of the temperature measurement error, the ending criterion of the iteration, etc. on the result of the inverse problem is investigated. It is proved that the method is a simple, stable and accurate one that can solve successfully the inverse heat conduction problem.
文摘In this paper, a bio-heat transfer model of temperature distribution in human eye is discussed using appropriate boundary conditions for cornea and sclera. Variational finite element method with Crank-Nicolson scheme is used to calculate the transient temperature distribution in normal human eye. The temperature with and without the effect of blood perfusion and metabolism on retina is simulated and compared for various ambient temperatures, evaporation rates and lens thermal conductivities. The obtained results are compared with experimental results and past results found in literatures. The results show that the steady state corneal temperature is achieved in around 31 and 45 minute of exposure at ambient temperatures 10℃ and 50℃ respectively. Steady state eye temperature is achieved earlier at higher evaporation rate. Similar result is achieved for higher lens thermal conductivity and also for lower ambient temperature.
文摘The steady, laminar, incompressible flow and heat transfer of a viscous fluid between two circular cylinders for two different types of thermal boundary conditions are investigated. The governing Navier-Stokes and thermal equations of the flow are reduced to a nonlinear system of ordinary differential equations. The equations are solved analyt- ically using the homotopy analysis method (HAM). Convergence of the HAM solutions is discussed in detail. These solutions are then compared with recently obtained numericM and perturbative solutions. Plots of the velocity and temperature profiles are provided for various values of the relevant parameters.
基金Project(TC160A310-10-01)supported by the National Industry Base Enhanced Program,ChinaProjects(2015B090926002,2013A090100002)supported by Science and Technology of Guangdong Province,ChinaProject(2016AG100932)supported by Key Technology Program of Foshan,China
文摘As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m^2·℃), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.
基金supported by the National Natural Science Foundation of China(Nos.12172273 and 11820101001)。
文摘Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.51476043)the Major National Scientific Instruments and Equipment Development Special Foundation of China(Grant No.51327803)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No.51121004)
文摘Reconstructing the distribution of optical parameters in the participating medium based on the frequency-domain radiative transfer equation (FD-RTE) to probe the internal structure of the medium is investigated in the present work. The forward model of FD-RTE is solved via the finite volume method (FVM). The regularization term formatted by the generalized Gaussian Markov random field model is used in the objective function to overcome the ill-posed nature of the inverse problem. The multi-start conjugate gradient (MCG) method is employed to search the minimum of the objective function and increase the efficiency of convergence. A modified adjoint differentiation technique using the collimated radiative intensity is developed to calculate the gradient of the objective function with respect to the optical parameters. All simulation results show that the proposed reconstruction algorithm based on FD-RTE can obtain the accurate distributions of absorption and scattering coefficients. The reconstructed images of the scattering coefficient have less errors than those of the absorption coefficient, which indicates the former are more suitable to probing the inner structure.
文摘Using the inverse algorithm of heat transfer and the nonlinear estimation method, matching calculated values with measured ones, the interfacial heat transfer coefficient at casting/Cu mould interface was determined.The results show that the interfacial heat transfer coefficient at Al/Cu interface changes in a range of 4.0×10 3 1.0×10 5 W·m -2 ·K -1 and its average value is in a range of 5.0×10 37.0×10 3 W·m -2 ·K -1 .
基金The work was financially supported by the National Natural Science Foundations of China (No.50476083).
文摘A similarity analysis for Marangoni convection induced flow over a vapor-liquid interface due to an imposed temperature gradient was carried out. The analysis assumes that the surface tension varies linearly with temperature but the temperature variation is a power law function of the location. The similarity solutions are presented numerically and the associated transfer characteristics are discussed.
文摘Nonlinear nonstationary heat conduction problem for infinite circular cylinder under a complex heat transfer taking into account the temperature dependence of thermophysical characteristics of materials is solved numerically by the method of lines. Directing it to the Cauchy’s problem for systems of ordinary differential equations studied feature which takes place on the cylinder axis. Taken into account the dependence on the temperature coefficient of heat transfer that the different interpretation of its physical content makes it possible to consider both convective and convective-ray or heat ray. Using the perturbation method, the corresponding thermoelasticity problem taking into account the temperature dependence of mechanical properties of the material is construed. The influence of the temperature dependence of the material on the distribution of temperature field and thermoelastic state of infinite circular cylinder made of titanium alloy Ti-6Al-4V by radiant heat transfer through the outer surface has been analyzed.