Non-random missing data poses serious problems in longitudinal studies. The binomial distribution parameter becomes to be unidentifiable without any other auxiliary information or assumption when it suffers from ignor...Non-random missing data poses serious problems in longitudinal studies. The binomial distribution parameter becomes to be unidentifiable without any other auxiliary information or assumption when it suffers from ignorable missing data. Existing methods are mostly based on the log-linear regression model. In this article, a model is proposed for longitudinal data with non-ignorable non-response. It is considered to use the pre-test baseline data to improve the identifiability of the post-test parameter. Furthermore, we derive the identified estimation (IE), the maximum likelihood estimation (MLE) and its associated variance for the post-test parameter. The simulation study based on the model of this paper shows that the proposed approach gives promising results.展开更多
Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct ...Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.展开更多
Sample size determination is commonly encountered in modern medical studies for two inde- pendent binomial experiments. A new approach for calculating sample size is developed by combining Bayesian and frequentist ide...Sample size determination is commonly encountered in modern medical studies for two inde- pendent binomial experiments. A new approach for calculating sample size is developed by combining Bayesian and frequentist idea when a hypothesis test between two binomial proportions is conducted. Sample size is calculated according to Bayesian posterior decision function and power of the most powerful test under 0-1 loss function. Sample sizes are investigated for two cases that two proportions are equal to some fixed value or a random value. A simulation study and a real example are used to illustrate the proposed methodologies.展开更多
基金Supported by the National Natural Science Foundation of China(No.10801019)the Fundamental ResearchFunds for the Central Universities(BUPT2012RC0708)
文摘Non-random missing data poses serious problems in longitudinal studies. The binomial distribution parameter becomes to be unidentifiable without any other auxiliary information or assumption when it suffers from ignorable missing data. Existing methods are mostly based on the log-linear regression model. In this article, a model is proposed for longitudinal data with non-ignorable non-response. It is considered to use the pre-test baseline data to improve the identifiability of the post-test parameter. Furthermore, we derive the identified estimation (IE), the maximum likelihood estimation (MLE) and its associated variance for the post-test parameter. The simulation study based on the model of this paper shows that the proposed approach gives promising results.
文摘Sample size determination typically relies on a power analysis based on a frequentist conditional approach. This latter can be seen as a particular case of the two-priors approach, which allows to build four distinct power functions to select the optimal sample size. We revise this approach when the focus is on testing a single binomial proportion. We consider exact methods and introduce a conservative criterion to account for the typical non-monotonic behavior of the power functions, when dealing with discrete data. The main purpose of this paper is to present a Shiny App providing a user-friendly, interactive tool to apply these criteria. The app also provides specific tools to elicit the analysis and the design prior distributions, which are the core of the two-priors approach.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10761011, 10961026, Ph.D. Special Scientific Research Foundation of Chinese University under Grant No. 20060673002, and by program for New Century Excellent Talents in University (NCET-07-0737).
文摘Sample size determination is commonly encountered in modern medical studies for two inde- pendent binomial experiments. A new approach for calculating sample size is developed by combining Bayesian and frequentist idea when a hypothesis test between two binomial proportions is conducted. Sample size is calculated according to Bayesian posterior decision function and power of the most powerful test under 0-1 loss function. Sample sizes are investigated for two cases that two proportions are equal to some fixed value or a random value. A simulation study and a real example are used to illustrate the proposed methodologies.