Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further ex...Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.展开更多
Aging plays a critical role in determining the durability and long-term performance of asphalt pavements,as it is influenced by both external factors(e.g.,temperature,ultraviolet(UV)radiation,moisture,oxidative gases)...Aging plays a critical role in determining the durability and long-term performance of asphalt pavements,as it is influenced by both external factors(e.g.,temperature,ultraviolet(UV)radiation,moisture,oxidative gases)and internal factors such as binder composition.Although laboratory simulations of aging are well established for conventional bituminous binders,limited attention has been paid to replicating and evaluating aging processes in bio-based binders.This review provides a comprehensive analysis of current laboratory techniques for simulating and assessing binder aging,with a focus on two key areas:aging simulation protocols and evaluation methodologies.The analysis shows that although several efforts have been made to incorporate external aging factors into lab simulations,significant challenges persist,especially in the case of bio-based binders,which are characterized by a high variability in composition and limited understanding of their aging behavior.Current evaluation approaches also exhibit limitations.Improvements are needed in the molecular-level analysis of oxidation(e.g.,through more representative oxidation modelsin molecular dynamicssimulations),in the separation and quantification of binder constituents,and in the application of advanced techniques such as fluorescence microscopy to better characterize polymer dispersion.To enhance the reliability of laboratory simulations,future research should aim to improve the correlation between laboratory and field aging,define robust aging indexes,and refine characterization methods.These advancements are particularly critical for bio-based binders,whose performance is highly sensitive to aging and for which standard test protocols are still underdeveloped.A deeper understanding of aging mechanisms in both polymer-modified and biobased binders,along with improved analytical tools for assessing oxidative degradation and morphological changes,will be essential to support the development of sustainable,high-performance paving materials.展开更多
The authors regret the following changes to the paper:1.The following author is added to this article:Agnieszka Chmielewska-Wysockaa 2.Section 2.1:●“An aqueous binder”should be changed to“A solvent binder”.●Repl...The authors regret the following changes to the paper:1.The following author is added to this article:Agnieszka Chmielewska-Wysockaa 2.Section 2.1:●“An aqueous binder”should be changed to“A solvent binder”.●Replace“a composition of ethylene glycol monobutyl ether and ethylene glycol”by“50% binder saturation”.展开更多
1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7]...1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.展开更多
An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition b...An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology.展开更多
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ...Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.展开更多
Introduction The widespread use of cement in concrete leads to increased carbon emissions,so the demand for supplementary cementitious materials increases significantly.Limestone powder and steel slag powder are widel...Introduction The widespread use of cement in concrete leads to increased carbon emissions,so the demand for supplementary cementitious materials increases significantly.Limestone powder and steel slag powder are widely used as supplementary cementitious materials in modern concrete.However,for UHPC and self-compacting concrete,an extremely low water/binder(W/B)ratio is on one hand a key factor in achieving ultra-high strength and ultra-low porosity of the materials,on the other hand,also leads to the deterioration of the rheological properties of the fresh paste.Meanwhile,the existing researches focus on the influence of single limestone powder or steel slag powder on the mechanical properties or microstructure of cement-based materials.Little work on the influence of steel slag powder or limestone powder on the rheological properties of composite paste at an extremely low water/binder ratio has been investigated quantitatively.The mechanism of the effect of steel slag powder or limestone powder on the rheological properties of composite paste at extremely low water/binder ratios is still unclear.In this work,the effects of steel slag powder and limestone powder on the rheological properties of composite paste at different low water/binder ratios were analyzed via determining the flow diameter,setting time,marsh cone flow time,rheological parameters,and total organic carbon content.Methods A composite paste was prepared with P.I 42.5 ordinary Portland cement,steel slag powder,limestone powder,blast furnace slag and silica fume as raw materials in a certain proportion.To achieve the preparation of composite paste with extremely low water/binder ratios,a polycarboxylate superplasticizer with a water/reducing rate of 40%(Jiangsu Subot New Materials Co.,Ltd.,China)was used.The dosage of polycarboxylate superplasticizer for the composite paste with different water/binder ratios of 0.16 and 0.21 was 2%and 0.8%,respectively.Composite pastes with different proportions of steel slag powder or limestone powder at water/binder ratios of 0.16 and 0.21 were prepared.The flow diameter(i.e.,the larger the flow diameter,the better the fluidity),setting time(i.e.,the time when the fluidity is lost)and marsh cone flow time(i.e.,the shorter the flow time,the better the fluidity)were determined to analyze the fluidity of the composite pastes.the rheological properties of composite paste at a water/binder ratio of 0.16 for rheological properties tests were determined,and the rheological parameters were obtained by the H-B model.The adsorption performance of the polycarboxylate superplasticizer was analyzed by testing the TOC content.Results and discussion When the ratio of water/binder is 0.16,both limestone powder and steel slag powder initially increase the flow diameter of the composite paste.However,the fluidity of the composite paste decreases over time,and the reduction is more pronounced with steel slag powder.This is because the nucleation and hydration promotion effect of limestone powder can reduce the loss rate of flow diameter,while the rough particles of steel slag powder increase the internal friction force,resulting in a decrease in the flow diameter of composite paste.Adding limestone powder and steel slag powder both shortens the setting time and marsh cone flow time of the composite paste.However,the steel slag powder addition of 30%delays the final setting time due to its delaying effect.Also,limestone powder can enhance the thixotropy and reduce the yield stress and plastic viscosity,thereby improving the rheological properties.In contrast,steel slag powder can increase the yield stress and plastic viscosity,thereby weakening the rheological properties and thixotropy.Steel slag powder and limestone powder both can enhance the adsorption effect of polycarboxylate superplasticizer.Steel slag powder has a stronger adsorption effect.The composite paste containing limestone powder has a higher free water content.This is because the rough and porous surface of steel slag itself and the uneven particle shape lead to the physical adsorption of polycarboxylate superplasticizer molecules on the surface of steel slag particles,thereby reducing the effective content of the water reducer dispersion.Increasing the water/binder ratio to 0.21 results in a decrease in the flow diameter of the composite paste.Furthermore,the setting time and marsh cone flow time can prolong due to the reduction in the dosage of polycarboxylate superplasticizer.Conclusions The results showed that the fluidity loss rate of composite paste with limestone powder could be lower than that of composite paste with steel slag powder.Compared to steel slag powder,the addition of limestone powder reduced the setting time and marsh cone flow time of the composite paste.The addition of limestone powder could shorten the yield stress and plastic viscosity of the composite paste.Therefore,the composite paste with limestone powder had better rheological properties and stronger thixotropy rather than that with steel slag powder.The addition of limestone powder could improve the rheological properties of the composite paste.Compared to composite paste with limestone powder,a better adsorption effect of polycarboxylate superplasticizer on the surface of the composite binder with steel slag powder could be obtained.The free water content of the composite paste with limestone powder was still higher than that of the composite paste with steel slag powder.The fluidity and rheological properties of the composite paste with limestone powder could be better.The comprehensive analysis indicated that a positive effect of limestone powder on rheological properties of composite paste at an extremely low water/binder ratio could be more dominant than that of steel slag powder.展开更多
Anode binders undergo decomposition during thermal runaway,generating highly flammable and explosive hydrogen,which poses a significant threat to the safety of lithium-ion batteries.However,the binder due to its relat...Anode binders undergo decomposition during thermal runaway,generating highly flammable and explosive hydrogen,which poses a significant threat to the safety of lithium-ion batteries.However,the binder due to its relatively small proportion is often overlooked in terms of its importance.This study elucidates the universal mechanism of hydrogen generation from the decomposition of binders and identifies the hydrogen-containing chemical bonds within the molecular structure of binders as the fundamental sources of hydrogen.The Fourier transform infrared spectroscopy of six commonly used binders reveals that five of them possess hydrogen-containing chemical bonds,indicating a potential for hydrogen generation,whereas the polytetrafluoroethylene binder lacks such bonds and cannot generate hydrogen.Differential scanning calorimetry is employed to compare the decomposition of these binders and their reaction with lithiated graphite.The results demonstrate that cyclic molecular structures not only enhance thermal stability but also increase the difficulty of hydrogen generation.Moreover,binders devoid of hydrogen atoms exhibit superior thermal stability and completely eliminate the risk of hydrogen generation.These findings provide critical insights into the molecular design of binders,offering promising strategies to mitigate or prevent hydrogen generation from binder decomposition and thereby substantially improve the safety of lithium-ion batteries.展开更多
High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode material...High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode materials is crucial to enhance the electrochemical performance of LIBs.However,the traditional fluoropolymer binder,poly(vinylidene difluoride)(PVDF),can potentially leach components or break down into poly(fluoroalkyl substances)(PFAS)chemicals,thereby contributing to PFAS contamination.A novel fluorine-free polymer,polysulfone-polyamide-polyimide(SPIO),was designed and synthesized as a binder for NCM811 cathodes.The SPIO binder exhibits exceptional mechanical properties and superior electrochemical characteristics.The cathode film fabricated with SPIO demonstrated a remarkable delamination force of 8 N(390 N·m^(-1)),indicating robust adhesion.The Li‖NCM811 cell incorporating the SPIO binder retained 80%of its initial capacity after 300 cycles at a current density of 0.2 C.In comparison,the control cells assem bled with the PVDF binder retained only 52%of their capacities under the same cycling conditions.Furthermore,the SPIO binder exhibited improved compatibility with the electrolyte.Transmission electron microscopy analysis of the cathode films after 100 cycles revealed the formation of a unifo rm,dense,and continuous chemical-electrochemical interface(CEI)by the SPIO binder on the surface of the NCM811 particles,which significantly contributed to the enhancement of the electrochemical performance.These results highlight the potential of SPIO as an advanced binder material for high-perfo rmance lithium-ion batteries.展开更多
Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fi...Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.展开更多
The rheological properties of an innovative coal-based colloidal composite binder(3Co-Binder)prepared via alkaline–oxygen excitation and mechanochemical synthesis are revealed.Derived from low-rank coal,3Co–Binder i...The rheological properties of an innovative coal-based colloidal composite binder(3Co-Binder)prepared via alkaline–oxygen excitation and mechanochemical synthesis are revealed.Derived from low-rank coal,3Co–Binder is applied in iron ore pelletization as a replacement for traditional bentonite,with the aim of improving the iron grades of the pellets.Cryoscanning electron microscopy revealed that 3Co-Binder exhibits a densely populated,porous network structure.It was determined to be a pseudo-plastic fluid with yield stress and shear-thinning characteristics.The stability of 3Co-Binder was influenced by the humic acid extraction rate,temperature,and static placing time.An extraction rate of humic acids above 96%was found to prevent sedimentation of 3Co-Binder,while lower temperatures and prolonged static placing time increased its apparent viscosity.A storage duration of less than 2 weeks and a temperature range of 25–35℃ were found to be optimal for maintaining the stability of 3Co-Binder.The viscous flow activation energy of 3Co-Binder remained stable at approximately 60 kJ mol^(-1) as the shear rate increased from 0.5 to 5 s^(-1).However,at higher shear rates,up to 100 s^(-1),the viscous flow activation energy decreased to 46.48 kJ mol^(–1).To ensure stability and dispersibility during storage,the rheological parameters of 3Co-Binder must meet the following criteria:yield stress below 10 Pa,consistency coefficient below 1.5 Pa s,non-Newtonian index below 1,and apparent viscosity below 10,000 mPa s at a shear rate of 1 s^(–1).展开更多
With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its ...With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes.展开更多
Silicon monoxide(SiO)is highly attractive as an anode material for high-energy lithium-ion batteries(LIBs)due to its significantly higher specific capacity.However,its practical application is hindered by substantial ...Silicon monoxide(SiO)is highly attractive as an anode material for high-energy lithium-ion batteries(LIBs)due to its significantly higher specific capacity.However,its practical application is hindered by substantial volume expansion during cycling,which leads to material pulverization and an unstable solid electrolyte interphase(SEI)layer.Inspired by the natural root fixation in soil,we designed a root-like topological structure binder,cassava starch-citric acid(CS-CA),based on the synergistic action of covalent and hydrogen bonds.The abundant-OH and-COOH groups in CS-CA molecules effectively form hydrogen bonds with the-OH groups on the SiO surface,significantly enhancing the interfacial interaction between CS-CA and SiO.The root-like topological structure of CS-CA with a high tolerance alleviates the mechanical stress generated by the volume changes of SiO.More encouragingly,the hydrogen bond action among CS-CA molecules produces a self-healing effect,which is advantageous for repairing damaged electrodes and preserving their structural integrity.As such,the CS-CA/SiO electrode exhibits exceptional cycling performance(963.1 mA h g^(-1)after 400 cycles at 2 A g^(-1))and rate capability(558.9 mA h g^(-1)at 5 A g^(-1)).This innovative,topologically interconnected,root-inspired binder will greatly advance the practical application of long-lasting micron-sized SiO anodes.展开更多
Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume ...Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume expansion,leading to structural degradation and poor cycling stability.Polymer binders play a critical role in addressing these issues by providing mechanical stabilization.Inspired by the mechanically adaptive architecture of spider webs,where stiff radial threads and extensible spiral threads act in synergy,a dual-thread architecture polymer binder(PALT)with energy dissipation ability enabled by integrating rigid and flexible domains is designed.The rigid poly(acrylic acid lithium)(PAALi)segments offer structural reinforcement,while the soft segments(poly(lipoic acid-tannic acid),LT)introduce dynamic covalent bonds and multiple hydrogen bonds that function as reversible sacrificial bonds,enhancing energy dissipation during cycling.Comprehensive experimental and computational analyses demonstrate effectively reduced stress concentration,improved structural integrity,and stable electrochemical performance over prolonged cycling.The silicon anode incorporating the PALT binder exhibits a satisfying capacity loss per cycle of 0.042% during 350 charge/discharge cycles at 3580 m A g^(-1).This work highlights a bioinspired binder design strategy that combines intrinsic rigidity with dynamic stress adaptability to advance the mechanical and electrochemical stability of silicon anodes.展开更多
Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-d...Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-depth investigation into the relationship between the molecular weight(MW)of PAA and its performance in pure Si anodes,leading to an absence of reliable theoretical guidance for designing and optimizing of PAA-based binders for these anodes.Herein,we select a series of PAA with varying MWs as binders for Si nanoparticle(SiNP)anodes to systematically identify the optimal MW of PAA for enhancing the electrochemical performance of SiNP anodes.The actual MWs of the various PAA were confirmed by gel permeation chromatography to accurately establish the relationship between MW and binder performance.Within an ultrawide weight average molecular weight(M_(w))range of 35.9-4850 kDa,we identify that the PAA binder with a M_(w)of 1250 kDa(PAA125)exhibits the strongest mechanical strength and the highest adhesion strength,attributed to its favorable molecular chain orientation and robust interchain interactions.These characteristics enable the SiNP anodes utilizing PAA125 to maintain the best interfacial chemistry and bulk mechanical structure stability,leading to optimal electrochemical performance.Notably,the enhancement in cycling stability of SiNP anode by PAA125 under practical application conditions is further validated by the 1.1 Ah LLNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/SiNP@PAA125 pouch cell.展开更多
The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One p...The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One promising approach involves creating a functional organic-inorganic interface on the Zn surface.Traditional binders,such as polyvinylidene fluoride(PVDF),fail to regulate water activity and ion migration,limiting the effectiveness of the interface.Herein,we introduce an aqueous dual ionic/electronic conducting binder,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),to build a water-scarce,Zn^(2+)-enriched interface.Our findings demonstrate that PEDOT:PSS not only facilitates uniform distribution of inorganic fillers,forming a cohesive and compact interface,but also significantly enhances mechanical integrity.Additionally,the sulfonate groups within the binder matrix disrupt the hydrogen bond network of water molecules,reducing water activity and lowering the desolvation energy barrier of Zn(H_(2)O)_(6)^(2+)clusters.Therefore,the transference number of Zn^(2+)is elevated to 0.81(compared to 0.61 with PVDF),mitigating undesirable side reactions and enabling dendrite-less Zn deposition.Consequently,symmetrical Zn||Zn cells with PEDOT:PSS binder demonstrate a lifetime with 4.2 times longer than those with PVDF.This work underscores the critical role of binder chemistry in stabilizing metal anodes for aqueous batteries.展开更多
Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavemen...Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full.展开更多
Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and s...Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and structural integrity.Replacing this phase with high-entropy alloys(HEAs)offers a promising approach to enhancing mechanical properties and addressing sustainability challenges.However,the complex multi-element composition of HEAs complicates conventional experimental design,making it difficult to explore the vast compositional space efficiently.Traditional trial-and-error methods are time-consuming,resource-intensive,and often ineffective in identifying optimal compositions.In contrast,artificial intelligence(AI)-driven approaches enable rapid screening and optimization of alloy compositions,significantly improving predictive accuracy and interpretability.Feature selection techniques were employed to identify key alloying elements influencing hardness,toughness,and wear resistance.To enhance model interpretability,explainable artificial intelligence(XAI)techniques—SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)—were applied to quantify the contributions of individual elements and uncover complex elemental interactions.Furthermore,a high-throughput machine learning(ML)–driven screening approach was implemented to optimize the binder phase composition,facilitating the discovery of HEAs with superiormechanical properties.Experimental validation demonstrated strong agreement between model predictions and measured performance,confirming the reliability of the ML framework.This study underscores the potential of integrating ML and XAI for data-driven materials design,providing a novel strategy for optimizing high-entropy cemented carbides.展开更多
We demonstrate for the first time the critical influence of binder molecular weight on the performance of slurry-cast lithium nickel manganese cobalt oxide(NMC)cathodes in sulfide-based all-solid-state batteries(SSBs)...We demonstrate for the first time the critical influence of binder molecular weight on the performance of slurry-cast lithium nickel manganese cobalt oxide(NMC)cathodes in sulfide-based all-solid-state batteries(SSBs).SSBs are increasingly recognized as a safer and potentially more efficient alternative to traditional Li-ion batteries,owing to the superior ionic conductivities and inherent safety features of sulfide solid electrolytes.However,the integration of high-voltage NMC cathodes with sheet-type sulfide solid electrolytes presents significant fabrication challenges.Our findings reveal that higher molecular weight binders not only enhance the discharge capacity and cycle life of these cathodes but also ensure robust adhesion and structural integrity.By optimizing binder molecular weights,we effectively shield the active materials from degradation and mechanical stress,significantly boosting the functionality and longevity of SSBs.These results underscore the paramount importance of binder properties in advancing the practical application of high-performance all-solid-state batteries.展开更多
The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was a...The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder.展开更多
基金We would like to show gratitude to the Yunnan Province Basic Research Major Project(202501BC070006(Y.Wang))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY ZNT2024002(Y.Wang))+3 种基金National Natural Science Foundation of China(22279070(L.Wang))and(U21A20170(X.He))the Ministry of Science and Technology of China(2019YFA0705703(L.Wang))Beijing Natural Science Foundation(L242005(X.He))Key Industry Science and Technology Projects for University Services in Yunnan Province(FWCY BSPY2024011(T.Lai)).
文摘Long-life energy storage batteries are integral to energy storage systems and electric vehicles,with lithium-ion batteries(LIBs)currently being the preferred option for extended usage-life energy storage.To further extend the life span of LIBs,it is essential to intensify investments in battery design,manufacturing processes,and the advancement of ancillary materials.The pursuit of long durability introduces new challenges for battery energy density.The advent of electrode material offers effective support in enhancing the battery’s long-duration performance.Often underestimated as part of the cathode composition,the binder plays a pivotal role in the longevity and electrochemical performance of the electrode.Maintaining the mechanical integrity of the electrode through judicious binder design is a fundamental requirement for achieving consistent long-life cycles and high energy density.This paper primarily concentrates on the commonly employed cathode systems in lithium-ion batteries,elucidates the significance of binders for both,discusses the application status,strengths,and weaknesses of novel binders,and ultimately puts forth corresponding optimization strategies.It underscores the critical function of binders in enhancing battery performance and advancing the sustainable development of lithium-ion batteries,aiming to offer fresh insights and perspectives for the design of high-performance LIBs.
文摘Aging plays a critical role in determining the durability and long-term performance of asphalt pavements,as it is influenced by both external factors(e.g.,temperature,ultraviolet(UV)radiation,moisture,oxidative gases)and internal factors such as binder composition.Although laboratory simulations of aging are well established for conventional bituminous binders,limited attention has been paid to replicating and evaluating aging processes in bio-based binders.This review provides a comprehensive analysis of current laboratory techniques for simulating and assessing binder aging,with a focus on two key areas:aging simulation protocols and evaluation methodologies.The analysis shows that although several efforts have been made to incorporate external aging factors into lab simulations,significant challenges persist,especially in the case of bio-based binders,which are characterized by a high variability in composition and limited understanding of their aging behavior.Current evaluation approaches also exhibit limitations.Improvements are needed in the molecular-level analysis of oxidation(e.g.,through more representative oxidation modelsin molecular dynamicssimulations),in the separation and quantification of binder constituents,and in the application of advanced techniques such as fluorescence microscopy to better characterize polymer dispersion.To enhance the reliability of laboratory simulations,future research should aim to improve the correlation between laboratory and field aging,define robust aging indexes,and refine characterization methods.These advancements are particularly critical for bio-based binders,whose performance is highly sensitive to aging and for which standard test protocols are still underdeveloped.A deeper understanding of aging mechanisms in both polymer-modified and biobased binders,along with improved analytical tools for assessing oxidative degradation and morphological changes,will be essential to support the development of sustainable,high-performance paving materials.
文摘The authors regret the following changes to the paper:1.The following author is added to this article:Agnieszka Chmielewska-Wysockaa 2.Section 2.1:●“An aqueous binder”should be changed to“A solvent binder”.●Replace“a composition of ethylene glycol monobutyl ether and ethylene glycol”by“50% binder saturation”.
基金supported by the National Key R&D Pro-gram of China(No.2022YFB3805701)National Natural Science Foundation of China(NSFC)(No.52371182,51701052,52192592,52192593)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2019QNRC001)the Heilongjiang Touyan Innovation Team Program.
文摘1.Introduction.Ni-Mn-X(X=Ga,In,Sn,or Sb)Heusler alloys have versatile properties[1-4],such as shape memory effect[1],superelastic-ity[5],magnetocaloric effect[3],elastocaloric effect[6],and even multicaloric effect[7],that indicate their potential for use in actu-ators,sensors,micropumps,energy harvesters,and solid-state re-frigeration[8-10].Among the alloys,Ni-Mn-Sn-based alloys are environment-friendly and cost-effective[6,7,11],and hence,they have received widespread attention.
文摘An energetic binder based on hydroxyl-terminated polybutadiene(HTPB),doped with different ratios of nitrocellulose(NC)(10%,20%,30%,and 50%),was developed to study the effect of NC doping on the thermal decomposition behavior of a composite propellant(CP)comprising ammonium nitrate(AN)as an oxidizer and magnesium(Mg)as a fuel.Optimization of the propellant formulation was conducted using Chemical Equilibrium with Applications-National Aeronautics and Space Administration(CEA-NASA)software,which demonstrated an increase in specific impulse by 12.09 s when the binder contained 50%NC.Fourier-transform infrared spectroscopy(FTIR)analysis confirmed the excellent compatibility between the components,and density measurements revealed an increase of 6.4%with a higher NC content.Morphological analysis using optical microscopy showed that NC doping improved the uniformity and compactness of the surface,reduced cavities,and achieved a more homogeneous particle distribution.Differential scanning calorimetry(DSC)analysis indicated a decrease in the decomposition temperature of the propellant as the NC content increased,while kinetic studies revealed a 48.68%reduction in the activation energy when 50%NC was incorporated into the binder.These findings suggest that the addition of NC enhances combustion efficiency and improves overall propellant performance.This study highlights the potential of the new HTPB-NC energetic binder as a promising approach for advancing solid propellant technology.
文摘Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.
文摘Introduction The widespread use of cement in concrete leads to increased carbon emissions,so the demand for supplementary cementitious materials increases significantly.Limestone powder and steel slag powder are widely used as supplementary cementitious materials in modern concrete.However,for UHPC and self-compacting concrete,an extremely low water/binder(W/B)ratio is on one hand a key factor in achieving ultra-high strength and ultra-low porosity of the materials,on the other hand,also leads to the deterioration of the rheological properties of the fresh paste.Meanwhile,the existing researches focus on the influence of single limestone powder or steel slag powder on the mechanical properties or microstructure of cement-based materials.Little work on the influence of steel slag powder or limestone powder on the rheological properties of composite paste at an extremely low water/binder ratio has been investigated quantitatively.The mechanism of the effect of steel slag powder or limestone powder on the rheological properties of composite paste at extremely low water/binder ratios is still unclear.In this work,the effects of steel slag powder and limestone powder on the rheological properties of composite paste at different low water/binder ratios were analyzed via determining the flow diameter,setting time,marsh cone flow time,rheological parameters,and total organic carbon content.Methods A composite paste was prepared with P.I 42.5 ordinary Portland cement,steel slag powder,limestone powder,blast furnace slag and silica fume as raw materials in a certain proportion.To achieve the preparation of composite paste with extremely low water/binder ratios,a polycarboxylate superplasticizer with a water/reducing rate of 40%(Jiangsu Subot New Materials Co.,Ltd.,China)was used.The dosage of polycarboxylate superplasticizer for the composite paste with different water/binder ratios of 0.16 and 0.21 was 2%and 0.8%,respectively.Composite pastes with different proportions of steel slag powder or limestone powder at water/binder ratios of 0.16 and 0.21 were prepared.The flow diameter(i.e.,the larger the flow diameter,the better the fluidity),setting time(i.e.,the time when the fluidity is lost)and marsh cone flow time(i.e.,the shorter the flow time,the better the fluidity)were determined to analyze the fluidity of the composite pastes.the rheological properties of composite paste at a water/binder ratio of 0.16 for rheological properties tests were determined,and the rheological parameters were obtained by the H-B model.The adsorption performance of the polycarboxylate superplasticizer was analyzed by testing the TOC content.Results and discussion When the ratio of water/binder is 0.16,both limestone powder and steel slag powder initially increase the flow diameter of the composite paste.However,the fluidity of the composite paste decreases over time,and the reduction is more pronounced with steel slag powder.This is because the nucleation and hydration promotion effect of limestone powder can reduce the loss rate of flow diameter,while the rough particles of steel slag powder increase the internal friction force,resulting in a decrease in the flow diameter of composite paste.Adding limestone powder and steel slag powder both shortens the setting time and marsh cone flow time of the composite paste.However,the steel slag powder addition of 30%delays the final setting time due to its delaying effect.Also,limestone powder can enhance the thixotropy and reduce the yield stress and plastic viscosity,thereby improving the rheological properties.In contrast,steel slag powder can increase the yield stress and plastic viscosity,thereby weakening the rheological properties and thixotropy.Steel slag powder and limestone powder both can enhance the adsorption effect of polycarboxylate superplasticizer.Steel slag powder has a stronger adsorption effect.The composite paste containing limestone powder has a higher free water content.This is because the rough and porous surface of steel slag itself and the uneven particle shape lead to the physical adsorption of polycarboxylate superplasticizer molecules on the surface of steel slag particles,thereby reducing the effective content of the water reducer dispersion.Increasing the water/binder ratio to 0.21 results in a decrease in the flow diameter of the composite paste.Furthermore,the setting time and marsh cone flow time can prolong due to the reduction in the dosage of polycarboxylate superplasticizer.Conclusions The results showed that the fluidity loss rate of composite paste with limestone powder could be lower than that of composite paste with steel slag powder.Compared to steel slag powder,the addition of limestone powder reduced the setting time and marsh cone flow time of the composite paste.The addition of limestone powder could shorten the yield stress and plastic viscosity of the composite paste.Therefore,the composite paste with limestone powder had better rheological properties and stronger thixotropy rather than that with steel slag powder.The addition of limestone powder could improve the rheological properties of the composite paste.Compared to composite paste with limestone powder,a better adsorption effect of polycarboxylate superplasticizer on the surface of the composite binder with steel slag powder could be obtained.The free water content of the composite paste with limestone powder was still higher than that of the composite paste with steel slag powder.The fluidity and rheological properties of the composite paste with limestone powder could be better.The comprehensive analysis indicated that a positive effect of limestone powder on rheological properties of composite paste at an extremely low water/binder ratio could be more dominant than that of steel slag powder.
基金supported by the National Natural Science Foundation of China(Grant No.92372111 and 22179070)the Fundame ntal Research Funds for the Central Universities(Grant No.RF1028623157)the SEU Innovation Capability Enhancement Plan for Doctoral Students(CXJH_SEU 24063)。
文摘Anode binders undergo decomposition during thermal runaway,generating highly flammable and explosive hydrogen,which poses a significant threat to the safety of lithium-ion batteries.However,the binder due to its relatively small proportion is often overlooked in terms of its importance.This study elucidates the universal mechanism of hydrogen generation from the decomposition of binders and identifies the hydrogen-containing chemical bonds within the molecular structure of binders as the fundamental sources of hydrogen.The Fourier transform infrared spectroscopy of six commonly used binders reveals that five of them possess hydrogen-containing chemical bonds,indicating a potential for hydrogen generation,whereas the polytetrafluoroethylene binder lacks such bonds and cannot generate hydrogen.Differential scanning calorimetry is employed to compare the decomposition of these binders and their reaction with lithiated graphite.The results demonstrate that cyclic molecular structures not only enhance thermal stability but also increase the difficulty of hydrogen generation.Moreover,binders devoid of hydrogen atoms exhibit superior thermal stability and completely eliminate the risk of hydrogen generation.These findings provide critical insights into the molecular design of binders,offering promising strategies to mitigate or prevent hydrogen generation from binder decomposition and thereby substantially improve the safety of lithium-ion batteries.
基金supported by the Shenzhen Science and Technology Program(No.JCYJ20220818100407016)the National Natural Science Foundation of China(No.22275059)+1 种基金Guangdong Special Support Program(No.2021TX06L775)high-level special funds(No.G03050K002)。
文摘High-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathodes are critical for enhancing the energy density of lithium-ion batteries(LIBs).The development of binders compatible with high-voltage NCM811 cathode materials is crucial to enhance the electrochemical performance of LIBs.However,the traditional fluoropolymer binder,poly(vinylidene difluoride)(PVDF),can potentially leach components or break down into poly(fluoroalkyl substances)(PFAS)chemicals,thereby contributing to PFAS contamination.A novel fluorine-free polymer,polysulfone-polyamide-polyimide(SPIO),was designed and synthesized as a binder for NCM811 cathodes.The SPIO binder exhibits exceptional mechanical properties and superior electrochemical characteristics.The cathode film fabricated with SPIO demonstrated a remarkable delamination force of 8 N(390 N·m^(-1)),indicating robust adhesion.The Li‖NCM811 cell incorporating the SPIO binder retained 80%of its initial capacity after 300 cycles at a current density of 0.2 C.In comparison,the control cells assem bled with the PVDF binder retained only 52%of their capacities under the same cycling conditions.Furthermore,the SPIO binder exhibited improved compatibility with the electrolyte.Transmission electron microscopy analysis of the cathode films after 100 cycles revealed the formation of a unifo rm,dense,and continuous chemical-electrochemical interface(CEI)by the SPIO binder on the surface of the NCM811 particles,which significantly contributed to the enhancement of the electrochemical performance.These results highlight the potential of SPIO as an advanced binder material for high-perfo rmance lithium-ion batteries.
基金supported by the Institute of Civil Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade,Industry and Energy of Korean government under grant No 23-CM-AI-08.
文摘Amidst the ever-growing interest in high-mass-loading Li battery electrodes,a persistent challenge has been the insufficient continuity of their ion/electron conduction pathways.Here,we propose cellulose elementary fibrils(CEFs)as a class of deagglomerated binder for high-mass-loading electrodes.Derived from natural wood,CEF represents the most fundamental unit of cellulose with nanoscale diameter.The preparation of the CEFs involves the modulation of intermolecular hydrogen bonding by the treatment with a proton acceptor and a hydrotropic agent.This elementary deagglomeration of the cellulose fibers increases surface area and anionic charge density,thus promoting uniform dispersion with carbon conductive additives and suppressing interfacial side reactions at electrodes.Consequently,a homogeneous redox reaction is achieved throughout the electrodes.The resulting CEF-based cathode(overlithiated layered oxide(OLO)is chosen as a benchmark electrode active material)exhibits a high areal-mass-loading(50 mg cm^(-2),equivalent to an areal capacity of 12.5 mAh cm^(-2))and a high specific energy density(445.4 Wh kg–1)of a cell,which far exceeds those of previously reported OLO cathodes.This study highlights the viability of the deagglomerated binder in enabling sustainable high-mass-loading electrodes that are difficult to achieve with conventional synthetic polymer binders.
基金supported by National Natural Science Foundation of China(No.52204302)Young Elite Scientist Sponsorship Program by CAST(No.YESS20220533)+1 种基金China Postdoctoral Science Foundation(No.2022M713519)Graduate Research Innovation Project of Central South University(No.1053320210230).
文摘The rheological properties of an innovative coal-based colloidal composite binder(3Co-Binder)prepared via alkaline–oxygen excitation and mechanochemical synthesis are revealed.Derived from low-rank coal,3Co–Binder is applied in iron ore pelletization as a replacement for traditional bentonite,with the aim of improving the iron grades of the pellets.Cryoscanning electron microscopy revealed that 3Co-Binder exhibits a densely populated,porous network structure.It was determined to be a pseudo-plastic fluid with yield stress and shear-thinning characteristics.The stability of 3Co-Binder was influenced by the humic acid extraction rate,temperature,and static placing time.An extraction rate of humic acids above 96%was found to prevent sedimentation of 3Co-Binder,while lower temperatures and prolonged static placing time increased its apparent viscosity.A storage duration of less than 2 weeks and a temperature range of 25–35℃ were found to be optimal for maintaining the stability of 3Co-Binder.The viscous flow activation energy of 3Co-Binder remained stable at approximately 60 kJ mol^(-1) as the shear rate increased from 0.5 to 5 s^(-1).However,at higher shear rates,up to 100 s^(-1),the viscous flow activation energy decreased to 46.48 kJ mol^(–1).To ensure stability and dispersibility during storage,the rheological parameters of 3Co-Binder must meet the following criteria:yield stress below 10 Pa,consistency coefficient below 1.5 Pa s,non-Newtonian index below 1,and apparent viscosity below 10,000 mPa s at a shear rate of 1 s^(–1).
基金supported by the National Research Foundation(NRF)of Korea grant funded by the Korean government(MSIT)(No.NRF-2021 M3 H4A1A02045962).
文摘With the increasing prevalence of lithium-ion batteries(LIBs)applications,the demand for high-capacity next-generation materials has also increased.SiO_(x)is currently considered a promising anode material due to its exceptionally high capacity for LIBs.However,the significant volumetric changes of SiO_(x)during cycling and its initial Coulombic efficiency(ICE)complicate its use,whether alone or in combination with graphite materials.In this study,a three-dimensional conductive binder network with high electronic conductivity and robust elasticity for graphite/SiO_(x)blended anodes was proposed by chemically anchoring carbon nanotubes and carboxymethyl cellulose binders using tannic acid as a chemical cross-linker.In addition,a dehydrogenation-based prelithiation strategy employing lithium hydride was utilized to enhance the ICE of SiO_(x).The combination of these two strategies increased the CE of SiO_(x)from 74%to87%and effectively mitigated its volume expansion in the graphite/SiO_(x)blended electrode,resulting in an efficient electron-conductive binder network.This led to a remarkable capacity retention of 94%after30 cycles,even under challenging conditions,with a high capacity of 550 mA h g^(-1)and a current density of 4 mA cm^(-2).Furthermore,to validate the feasibility of utilizing prelithiated SiO_(x)anode materials and the conductive binder network in LIBs,a full cell incorporating these materials and a single-crystalline Ni-rich cathode was used.This cell demonstrated a~27.3%increase in discharge capacity of the first cycle(~185.7 mA h g^(-1))and exhibited a cycling stability of 300 cycles.Thus,this study reports a simple,feasible,and insightful method for designing high-performance LIB electrodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.22378342,92372101,52162036,and 21875155)the Fundamental Research Funds for the Central Universities(20720220010)+3 种基金the National Key Research and Development Program of China(2021YFA1201502)the Natural Science Foundation of Sichuan Province(Grant No.2024NSFSC1160)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20230608)support of Nanqiang Young Top-notch Talent Fellowship in Xiamen University。
文摘Silicon monoxide(SiO)is highly attractive as an anode material for high-energy lithium-ion batteries(LIBs)due to its significantly higher specific capacity.However,its practical application is hindered by substantial volume expansion during cycling,which leads to material pulverization and an unstable solid electrolyte interphase(SEI)layer.Inspired by the natural root fixation in soil,we designed a root-like topological structure binder,cassava starch-citric acid(CS-CA),based on the synergistic action of covalent and hydrogen bonds.The abundant-OH and-COOH groups in CS-CA molecules effectively form hydrogen bonds with the-OH groups on the SiO surface,significantly enhancing the interfacial interaction between CS-CA and SiO.The root-like topological structure of CS-CA with a high tolerance alleviates the mechanical stress generated by the volume changes of SiO.More encouragingly,the hydrogen bond action among CS-CA molecules produces a self-healing effect,which is advantageous for repairing damaged electrodes and preserving their structural integrity.As such,the CS-CA/SiO electrode exhibits exceptional cycling performance(963.1 mA h g^(-1)after 400 cycles at 2 A g^(-1))and rate capability(558.9 mA h g^(-1)at 5 A g^(-1)).This innovative,topologically interconnected,root-inspired binder will greatly advance the practical application of long-lasting micron-sized SiO anodes.
基金the National Natural Science Foundation of China(32201497)for the financial support of this research。
文摘Silicon(Si)is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,its application is significantly limited by severe volume expansion,leading to structural degradation and poor cycling stability.Polymer binders play a critical role in addressing these issues by providing mechanical stabilization.Inspired by the mechanically adaptive architecture of spider webs,where stiff radial threads and extensible spiral threads act in synergy,a dual-thread architecture polymer binder(PALT)with energy dissipation ability enabled by integrating rigid and flexible domains is designed.The rigid poly(acrylic acid lithium)(PAALi)segments offer structural reinforcement,while the soft segments(poly(lipoic acid-tannic acid),LT)introduce dynamic covalent bonds and multiple hydrogen bonds that function as reversible sacrificial bonds,enhancing energy dissipation during cycling.Comprehensive experimental and computational analyses demonstrate effectively reduced stress concentration,improved structural integrity,and stable electrochemical performance over prolonged cycling.The silicon anode incorporating the PALT binder exhibits a satisfying capacity loss per cycle of 0.042% during 350 charge/discharge cycles at 3580 m A g^(-1).This work highlights a bioinspired binder design strategy that combines intrinsic rigidity with dynamic stress adaptability to advance the mechanical and electrochemical stability of silicon anodes.
基金funding supports of the National Natural Science Foundation of China(52402315,52172244,51874104,and 52172190)the"Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang"(2023R01007)the Zhejiang Provincial"Jianbing"and"Lingyan"R&D Programs(Grant No.2024C01262)。
文摘Polyacrylic acid(PAA)-based binders have been demonstrated to significantly enhance the cycling stability of pure silicon(Si)anodes compared to other binder types.However,there is a notable lack of systematic and in-depth investigation into the relationship between the molecular weight(MW)of PAA and its performance in pure Si anodes,leading to an absence of reliable theoretical guidance for designing and optimizing of PAA-based binders for these anodes.Herein,we select a series of PAA with varying MWs as binders for Si nanoparticle(SiNP)anodes to systematically identify the optimal MW of PAA for enhancing the electrochemical performance of SiNP anodes.The actual MWs of the various PAA were confirmed by gel permeation chromatography to accurately establish the relationship between MW and binder performance.Within an ultrawide weight average molecular weight(M_(w))range of 35.9-4850 kDa,we identify that the PAA binder with a M_(w)of 1250 kDa(PAA125)exhibits the strongest mechanical strength and the highest adhesion strength,attributed to its favorable molecular chain orientation and robust interchain interactions.These characteristics enable the SiNP anodes utilizing PAA125 to maintain the best interfacial chemistry and bulk mechanical structure stability,leading to optimal electrochemical performance.Notably,the enhancement in cycling stability of SiNP anode by PAA125 under practical application conditions is further validated by the 1.1 Ah LLNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)/SiNP@PAA125 pouch cell.
基金supported by the National Natural Science Foundation of China(Grant No.22461142135,22479046)the Key Programs funded by Science and Technology Department of Shaanxi Provincial Government(Grant:No.2024GX-YBXM-336)+2 种基金the Xi’an Municipal Bureau of Science and Technology(Grant:No.2023JHGXRC-0097)the Yulin Science and Technology Bureau(Grant:No.2024-CXY-161)the Xi’an Beilin District Science and Technology and Industrial Information Bureau(Grant:No.GX2440)。
文摘The development of aqueous zinc-ion batteries is crucial for advancing sustainable energy storage technologies.However,their widespread application is hindered by Zn corrosion and uncontrolled Zn dendrite growth.One promising approach involves creating a functional organic-inorganic interface on the Zn surface.Traditional binders,such as polyvinylidene fluoride(PVDF),fail to regulate water activity and ion migration,limiting the effectiveness of the interface.Herein,we introduce an aqueous dual ionic/electronic conducting binder,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),to build a water-scarce,Zn^(2+)-enriched interface.Our findings demonstrate that PEDOT:PSS not only facilitates uniform distribution of inorganic fillers,forming a cohesive and compact interface,but also significantly enhances mechanical integrity.Additionally,the sulfonate groups within the binder matrix disrupt the hydrogen bond network of water molecules,reducing water activity and lowering the desolvation energy barrier of Zn(H_(2)O)_(6)^(2+)clusters.Therefore,the transference number of Zn^(2+)is elevated to 0.81(compared to 0.61 with PVDF),mitigating undesirable side reactions and enabling dendrite-less Zn deposition.Consequently,symmetrical Zn||Zn cells with PEDOT:PSS binder demonstrate a lifetime with 4.2 times longer than those with PVDF.This work underscores the critical role of binder chemistry in stabilizing metal anodes for aqueous batteries.
基金supported by the Key R&D Project in Shaanxi Province(No.2024GX-YBXM-371)Shaanxi Qinchuangyuan“Scientists+Engineers”Team Construction Project(2025QCY-KXJ-141).
文摘Presently,many asphalts and modified asphalts fail to satisfy long-term serviceability and durability criteria.Researchers are utilizing several asphalt modifiers to enhance the overall performance of flexible pavements.This study consolidated findings from multiple research efforts on using nanomaterials for modifying SBS modified asphalt(SBS MA)and conducted a comprehensive literature review.Initially,it discussed the importance of SBS MA within asphalt modification systems and identified the key nanomaterials utilized in SBS modified asphalt.After this,it reviewed their preparation methods,dispersion and characterization techniques,and their impact on the key performance parameters of SBS MA binder and its mixture such as viscosity,rutting resistance,fatigue resistance,ageing and moisture damage etc.Additionally,it highlighted the advantages of nanomaterials over other modifiers.This study also addressed the challenges and limitations of incorporating nanomaterials in SBS MA.The findings indicated that when properly integrated,nanomaterials could significantly improve the performance of SBS MA,making them a promising addition to future road construction and maintenance projects.However,using nanomaterials for SBS MA modifications and mixtures has been challenged by limited practical applications,insufficient life cycle cost analyses,a lack of standardized guidelines,cost-effective nanomaterials and insufficient mixing procedures.Those areas require additional research to realise the potential application of nanomaterials in SBS modified asphalt modifications full.
文摘Tungsten carbide-based(WC-based)cemented carbides are widely recognized as high-performance tool materials.Traditionally,single metals such as cobalt(Co)or nickel(Ni)serve as the binder phase,providing toughness and structural integrity.Replacing this phase with high-entropy alloys(HEAs)offers a promising approach to enhancing mechanical properties and addressing sustainability challenges.However,the complex multi-element composition of HEAs complicates conventional experimental design,making it difficult to explore the vast compositional space efficiently.Traditional trial-and-error methods are time-consuming,resource-intensive,and often ineffective in identifying optimal compositions.In contrast,artificial intelligence(AI)-driven approaches enable rapid screening and optimization of alloy compositions,significantly improving predictive accuracy and interpretability.Feature selection techniques were employed to identify key alloying elements influencing hardness,toughness,and wear resistance.To enhance model interpretability,explainable artificial intelligence(XAI)techniques—SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)—were applied to quantify the contributions of individual elements and uncover complex elemental interactions.Furthermore,a high-throughput machine learning(ML)–driven screening approach was implemented to optimize the binder phase composition,facilitating the discovery of HEAs with superiormechanical properties.Experimental validation demonstrated strong agreement between model predictions and measured performance,confirming the reliability of the ML framework.This study underscores the potential of integrating ML and XAI for data-driven materials design,providing a novel strategy for optimizing high-entropy cemented carbides.
基金partially sponsored by the Office of Energy Efficiency and Renewable Energy(EERE)in the Vehicle Technologies Office(VTO)through the Advanced Battery Materials Research(BMR)Program,managed by DrsThe Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan(http://energy.gov/downloads/doe-public-access-plan).
文摘We demonstrate for the first time the critical influence of binder molecular weight on the performance of slurry-cast lithium nickel manganese cobalt oxide(NMC)cathodes in sulfide-based all-solid-state batteries(SSBs).SSBs are increasingly recognized as a safer and potentially more efficient alternative to traditional Li-ion batteries,owing to the superior ionic conductivities and inherent safety features of sulfide solid electrolytes.However,the integration of high-voltage NMC cathodes with sheet-type sulfide solid electrolytes presents significant fabrication challenges.Our findings reveal that higher molecular weight binders not only enhance the discharge capacity and cycle life of these cathodes but also ensure robust adhesion and structural integrity.By optimizing binder molecular weights,we effectively shield the active materials from degradation and mechanical stress,significantly boosting the functionality and longevity of SSBs.These results underscore the paramount importance of binder properties in advancing the practical application of high-performance all-solid-state batteries.
基金supported by National Natural Science Foundation of China(No.52204302)Young Elite Scientist Sponsorship Program by CAST(No.YESS20220533)Hunan Provincial Natural Science Foundation of China(No.2022JJ40625).
文摘The isothermal oxidation kinetics of vanadium–titanium magnetite(VTM)pellets prepared with 3Co-binder(coal-based colloidal composite binder)and F-binder(pulverized Funa binder)are compared.The oxidation process was analyzed using the first-order irreversible reaction,following the shrinking unreacted nucleus model.The results demonstrate that VTM pellets prepared with 3Co-binder exhibit a faster oxidation rate than those with F-binder across the temperatures ranging from 1073 to 1473 K.In both cases,the oxidation process was controlled by an interfacial chemical reaction during the pre-oxidation stage and by internal diffusion during the mid-oxidation stage.The type of binder did not influence the primary oxidation control mechanism of the VTM pellets.However,the apparent rate constants in the pre-oxidation stage and the internal diffusion coefficients in the mid-oxidation stage were higher for pellets with 3Co-binder compared to those with F-binder.The apparent activation energies for the 3Co-binder pellets were similar to those of bentonite,indicating favorable kinetic conditions without negative impacts on the oxidation process.Nonetheless,it is important to note that pellets with F-binder required a longer oxidation time than those with 3Co-binder.