期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Semi-Supervised Learning Based Big Data-Driven Anomaly Detection in Mobile Wireless Networks 被引量:6
1
作者 Bilal Hussain Qinghe Du Pinyi Ren 《China Communications》 SCIE CSCD 2018年第4期41-57,共17页
With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different lev... With rising capacity demand in mobile networks, the infrastructure is also becoming increasingly denser and complex. This results in collection of larger amount of raw data(big data) that is generated at different levels of network architecture and is typically underutilized. To unleash its full value, innovative machine learning algorithms need to be utilized in order to extract valuable insights which can be used for improving the overall network's performance. Additionally, a major challenge for network operators is to cope up with increasing number of complete(or partial) cell outages and to simultaneously reduce operational expenditure. This paper contributes towards the aforementioned problems by exploiting big data generated from the core network of 4 G LTE-A to detect network's anomalous behavior. We present a semi-supervised statistical-based anomaly detection technique to identify in time: first, unusually low user activity region depicting sleeping cell, which is a special case of cell outage; and second, unusually high user traffic area corresponding to a situation where special action such as additional resource allocation, fault avoidance solution etc. may be needed. Achieved results demonstrate that the proposed method can be used for timely and reliable anomaly detection in current and future cellular networks. 展开更多
关键词 5G 4G LTE-A anomaly detec-tion call detail record machine learning bigdata analytics network behavior analysis sleeping cell
在线阅读 下载PDF
SA-MSVM:Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter
2
作者 C.P.Thamil Selvi R.PushpaLaksmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2439-2456,共18页
One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about ... One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about products,persons,initiatives,political issues,research achievements,and entertainment are discussed on social websites.The unique data analytics method cannot be applied to various social websites since the data formats are different.Several approaches,techniques,and tools have been used for big data analytics,opinion mining,or sentiment analysis,but the accuracy is yet to be improved.The proposed work is motivated to do sentiment analysis on Twitter data for cloth products using Simulated Annealing incorporated with the Multiclass Support Vector Machine(SA-MSVM)approach.SA-MSVM is a hybrid heuristic approach for selecting and classifying text-based sentimental words following the Natural Language Processing(NLP)process applied on tweets extracted from the Twitter dataset.A simulated annealing algorithm searches for relevant features and selects and identifies sentimental terms that customers criticize.SA-MSVM is implemented,experimented with MATLAB,and the results are verified.The results concluded that SA-MSVM has more potential in sentiment analysis and classification than the existing Support Vector Machine(SVM)approach.SA-MSVM has obtained 96.34%accuracy in classifying the product review compared with the existing systems. 展开更多
关键词 bigdata analytics Twitter dataset for cloth product heuristic approaches sentiment analysis feature selection classification
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部