On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th Nation...On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.展开更多
This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models ...This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.展开更多
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr...Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.展开更多
The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This...The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology.展开更多
This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model...This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.展开更多
Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a trans...Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT).展开更多
Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tecto...Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.展开更多
With the constant changes of the times,China's science and technology have entered a period of rapid development.At the same time,the economic structure is also changing with the changes of the times,and the origi...With the constant changes of the times,China's science and technology have entered a period of rapid development.At the same time,the economic structure is also changing with the changes of the times,and the original Haikou logistics industry in the process is also facing new impacts and challenges.And related enterprises want to stand out in the fierce market competition,we must optimize and upgrade the current industry development situation,promote the integrated development of Haikou logistics and manufacturing industry,to constantly promote the innovative application of digital technology in the logistics industry and manufacturing industry,the formation of a multi-force economic development model.This paper mainly starts with the development status of Haikou logistics,analyzes the importance of the integration of Haikou logistics and manufacturing industry under the background of big data drive,and makes an in-depth discussion on the path of the integration of Haikou logistics and manufacturing industry under the drive of big data,hoping to contribute new strength to the development of social economy.展开更多
As China’s first new energy comprehensive demonstration zone,Ningxia’s solar photovoltaic(PV)industry has developed rapidly,but it still faces shortcomings in terms of intelligence and digitalization.This study focu...As China’s first new energy comprehensive demonstration zone,Ningxia’s solar photovoltaic(PV)industry has developed rapidly,but it still faces shortcomings in terms of intelligence and digitalization.This study focuses on the application and construction of an intelligent big data platform based on Narrowband Internet of Things(NB-IoT)technology within Ningxia’s solar PV industry.It explores the application trends of digital technology in the energy sector,particularly in the PV industry under the backdrop of energy reform,analyzes the technological development status of the smart energy field both domestically and internationally,and details the research methods and design components of the platform(including the photovoltaic base data platform,outdoor mobile application,remote data system,and back-office management system).The study discusses the opportunities and challenges Ningxia’s PV industry faces and proposes a construction pathway.It provides a theoretical foundation and technical support for the digital transformation of Ningxia’s PV industry,facilitating industrial upgrading and sustainable development.Although the current research is limited to the proposed design scheme,it establishes a basis for future empirical research and platform development.展开更多
As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitati...As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitating data-driven decision making,fostering innovation ecosystems,and maintaining operational stability.In this study,we propose an advanced deployment algorithm for Service Function Chaining(SFC)that leverages an enhanced Practical Byzantine Fault Tolerance(PBFT)mechanism.The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings.By integrating blockchain technology and Deep Reinforcement Learning(DRL),our algorithm not only optimizes resource utilization and quality of service but also ensures robust security during SFC deployment.Specifically,the enhanced PBFT consensus mechanism(VRPBFT)significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable Random Function(VRF)and a node reputation grading model.Experimental results demonstrate that compared to traditional PBFT,the proposed VRPBFT algorithm reduces consensus latency by approximately 30%and decreases the proportion of Byzantine nodes by 40%after 100 rounds of consensus.Furthermore,the DRL-based SFC deployment algorithm(SDRL)exhibits rapid convergence during training,with improvements in long-term average revenue,request acceptance rate,and revenue/cost ratio of 17%,14.49%,and 20.35%,respectively,over existing algorithms.Additionally,the CPU resource utilization of the SDRL algorithmreaches up to 42%,which is 27.96%higher than other algorithms.These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,service quality,and security in SFC deployment.展开更多
In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social developmen...In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation.展开更多
In the era of Big Data,the attention economy has emerged as a core logic of capital accumulation,yet behavioral economic explanations fail to penetrate the unconscious drives and desire structures underlying attention...In the era of Big Data,the attention economy has emerged as a core logic of capital accumulation,yet behavioral economic explanations fail to penetrate the unconscious drives and desire structures underlying attention investment.This paper adopts Lacan’s topological framework of the three orders(the Real,the Symbolic,and the Imaginary)to conduct a psychoanalytic dissection of the attention economy.It argues that Big Data-driven attention mechanisms essentially manipulate desire across these three orders:algorithms,functioning as the“digital big Other,”exploit the Real’s traumatic surplus and the deferred structure of desire through infinite scroll and traumatic stimuli;regulate identity production in the Symbolic via visibility laws,social currency,and datafication;and construct narcissistic illusions in the Imaginary through filters,filter bubbles,and illusions of hyperconnection.Ultimately,the paper proposes an ethics of lucid attention,calling for critical algorithmic literacy,confrontation with the Real’s lack,dismantling of Imaginary illusions,and reclaiming sovereignty over attention-essential for preserving subjective dignity and human freedom in the digital age.展开更多
The paper utilized a standardized methodology to identify prognostic biomarkers in hepatocellular carcinoma(HCC)by analyzing transcriptomic and clinical data from The Cancer Genome Atlas(TCGA)database.The approach,whi...The paper utilized a standardized methodology to identify prognostic biomarkers in hepatocellular carcinoma(HCC)by analyzing transcriptomic and clinical data from The Cancer Genome Atlas(TCGA)database.The approach,which included stringent data preprocessing,differential gene expression analysis,and Kaplan-Meier survival analysis,provided valuable insights into the genetic underpinnings of HCC.The comprehensive analysis of a dataset involving 370 HCC patients uncovered correlations between survival status and pathological characteristics,including tumor size,lymph node involvement,and distant metastasis.The processed transcriptome dataset,comprising 420 samples and annotating 26,783 genes,served as a robust platform for identifying differential gene expression patterns.Among the significant differential expression genes,the key genes such as FBXO43,HAGLROS,CRISPLD1,LRRC3.DT,and ERN2,were pinpointed,which showed significant associations with patient survival outcomes,indicating their potential as novel prognostic biomarkers.This study can not only enhance the understanding of HCC’s genetic landscape but also establish a blueprint for a standardized process to discover prognostic biomarkers of various diseases using genetic big data.Future research should focus on validating these biomarkers through independent cohorts and exploring their utility in the development of personalized treatment strategies.展开更多
In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This s...In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.展开更多
With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation...With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation.In enterprise human resource management,big data technology also has a broad application space and important application value.To gain higher market competitiveness and comprehensively improve the quality and efficiency of human resource management,enterprises need to rely on big data technology for comprehensive reform and optimization,thereby building an efficient,fair,open,and scientific human resource management model.This paper analyzes the problems and changes of enterprise human resource management in the era of big data,and then puts forward effective strategies for enterprise human resource management based on the era of big data.展开更多
In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data te...In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data technology has significantly improved the decision-making efficiency,customer insight,and risk management capabilities of financial institutions.The financial industry has become a pioneer in the application of big data technology,which is widely used in scenarios such as fraud detection,risk management,customer service optimization,and smart transactions.However,financial data security management also faces many challenges,including data breaches,privacy protection,compliance requirements,the complexity of emerging technologies,and the balance between data access and security.This article explores the major challenges of financial data security management,coping strategies,and the evolution of the regulatory environment,and it looks ahead to future trends,highlighting the important role of artificial intelligence and machine learning in financial data security.展开更多
In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data ...In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data collection and integration,limitations of analytical technologies,talent development,team building,and policy support when applying agricultural big data.Effective application strategies are proposed,including data-driven precision agriculture practices,construction of data integration and management platforms,data security and privacy protection strategies,as well as long-term planning and development strategies for agricultural big data,to maximize its impact on agricultural economic management.Future advancements require collaborative efforts in technological innovation,talent cultivation,and policy support,to realize the extensive application of agricultural big data in agricultural economic management and ensure sustainable industrial development.展开更多
With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty r...With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty recurrence monitoring and agricultural product sales systems can effectively enhance precise identification and early warning capabilities,promoting the sustainable development of rural economies.This paper explores the application of big data technology in poverty recurrence monitoring,analyzes its innovative integration with agricultural product sales systems,and proposes an intelligent monitoring and sales platform model based on big data,aiming to provide a reference for relevant policy formulation.展开更多
The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For ...The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For this,a TBM big data preprocessing method in ML was proposed in the present study.It emphasized the accurate division of TBM tunneling cycle and the optimization method of feature extraction.Based on the data collected from a TBM water conveyance tunnel in China,its effectiveness was demonstrated by application in predicting TBM performance.Firstly,the Score-Kneedle(S-K)method was proposed to divide a TBM tunneling cycle into five phases.Conducted on 500 TBM tunneling cycles,the S-K method accurately divided all five phases in 458 cycles(accuracy of 91.6%),which is superior to the conventional duration division method(accuracy of 74.2%).Additionally,the S-K method accurately divided the stable phase in 493 cycles(accuracy of 98.6%),which is superior to two state-of-the-art division methods,namely the histogram discriminant method(accuracy of 94.6%)and the cumulative sum change point detection method(accuracy of 92.8%).Secondly,features were extracted from the divided phases.Specifically,TBM tunneling resistances were extracted from the free rotating phase and free advancing phase.The resistances were subtracted from the total forces to represent the true rock-fragmentation forces.The secant slope and the mean value were extracted as features of the increasing phase and stable phase,respectively.Finally,an ML model integrating a deep neural network and genetic algorithm(GA-DNN)was established to learn the preprocessed data.The GA-DNN used 6 secant slope features extracted from the increasing phase to predict the mean field penetration index(FPI)and torque penetration index(TPI)in the stable phase,guiding TBM drivers to make better decisions in advance.The results indicate that the proposed TBM big data preprocessing method can improve prediction accuracy significantly(improving R2s of TPI and FPI on the test dataset from 0.7716 to 0.9178 and from 0.7479 to 0.8842,respectively).展开更多
In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Fir...In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Firstly,this paper introduces the big data-driven forecast model of scenic spot passenger flow.Based on the traditional autoregressive integral moving average model and artificial neural network model,it builds a big data analysis and forecast model.Through the analysis of data source,model building,scenic spot passenger flow accuracy,and modeling time comparison,it affirms the advantages of big data analysis in forecasting scenic spot passenger flow.Finally,it puts forward four commercial operation optimization strategies:adjusting the ticket pricing of scenic spots,upgrading the catering and accommodation services in scenic spots,planning and designing play projects,and formulating accurate scenic spot marketing strategies,in order to provide references for the optimization and upgrading of smart tourist attractions in the future.展开更多
文摘On October 18,2017,the 19th National Congress Report called for the implementation of the Healthy China Strategy.The development of biomedical data plays a pivotal role in advancing this strategy.Since the 18th National Congress of the Communist Party of China,China has vigorously promoted the integration and implementation of the Healthy China and Digital China strategies.The National Health Commission has prioritized the development of health and medical big data,issuing policies to promote standardized applica-tions and foster innovation in"Internet+Healthcare."Biomedical data has significantly contributed to preci-sion medicine,personalized health management,drug development,disease diagnosis,public health monitor-ing,and epidemic prediction capabilities.
基金sponsored by the U.S.Department of Housing and Urban Development(Grant No.NJLTS0027-22)The opinions expressed in this study are the authors alone,and do not represent the U.S.Depart-ment of HUD’s opinions.
文摘This paper addresses urban sustainability challenges amid global urbanization, emphasizing the need for innova tive approaches aligned with the Sustainable Development Goals. While traditional tools and linear models offer insights, they fall short in presenting a holistic view of complex urban challenges. System dynamics (SD) models that are often utilized to provide holistic, systematic understanding of a research subject, like the urban system, emerge as valuable tools, but data scarcity and theoretical inadequacy pose challenges. The research reviews relevant papers on recent SD model applications in urban sustainability since 2018, categorizing them based on nine key indicators. Among the reviewed papers, data limitations and model assumptions were identified as ma jor challenges in applying SD models to urban sustainability. This led to exploring the transformative potential of big data analytics, a rare approach in this field as identified by this study, to enhance SD models’ empirical foundation. Integrating big data could provide data-driven calibration, potentially improving predictive accuracy and reducing reliance on simplified assumptions. The paper concludes by advocating for new approaches that reduce assumptions and promote real-time applicable models, contributing to a comprehensive understanding of urban sustainability through the synergy of big data and SD models.
基金supported by the National Natural Science Foundation of China(32370703)the CAMS Innovation Fund for Medical Sciences(CIFMS)(2022-I2M-1-021,2021-I2M-1-061)the Major Project of Guangzhou National Labora-tory(GZNL2024A01015).
文摘Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape.
基金partially supported by the Construction of Collaborative Innovation Center of Beijing Academy of Agricultural and Forestry Sciences(KJCX20240406)the Beijing Natural Science Foundation(JQ24037)+1 种基金the National Natural Science Foundation of China(32330075)the Earmarked Fund for China Agriculture Research System(CARS-02 and CARS-54)。
文摘The security of the seed industry is crucial for ensuring national food security.Currently,developed countries in Europe and America,along with international seed industry giants,have entered the Breeding 4.0 era.This era integrates biotechnology,artificial intelligence(AI),and big data information technology.In contrast,China is still in a transition period between stages 2.0 and 3.0,which primarily relies on conventional selection and molecular breeding.In the context of increasingly complex international situations,accurately identifying core issues in China's seed industry innovation and seizing the frontier of international seed technology are strategically important.These efforts are essential for ensuring food security and revitalizing the seed industry.This paper systematically analyzes the characteristics of crop breeding data from artificial selection to intelligent design breeding.It explores the applications and development trends of AI and big data in modern crop breeding from several key perspectives.These include highthroughput phenotype acquisition and analysis,multiomics big data database and management system construction,AI-based multiomics integrated analysis,and the development of intelligent breeding software tools based on biological big data and AI technology.Based on an in-depth analysis of the current status and challenges of China's seed industry technology development,we propose strategic goals and key tasks for China's new generation of AI and big data-driven intelligent design breeding.These suggestions aim to accelerate the development of an intelligent-driven crop breeding engineering system that features large-scale gene mining,efficient gene manipulation,engineered variety design,and systematized biobreeding.This study provides a theoretical basis and practical guidance for the development of China's seed industry technology.
基金2024 Anqing Normal University University-Level Key Project(ZK2024062D)。
文摘This study examines the Big Data Collection and Preprocessing course at Anhui Institute of Information Engineering,implementing a hybrid teaching reform using the Bosi Smart Learning Platform.The proposed hybrid model follows a“three-stage”and“two-subject”framework,incorporating a structured design for teaching content and assessment methods before,during,and after class.Practical results indicate that this approach significantly enhances teaching effectiveness and improves students’learning autonomy.
文摘Managing sensitive data in dynamic and high-stakes environments,such as healthcare,requires access control frameworks that offer real-time adaptability,scalability,and regulatory compliance.BIG-ABAC introduces a transformative approach to Attribute-Based Access Control(ABAC)by integrating real-time policy evaluation and contextual adaptation.Unlike traditional ABAC systems that rely on static policies,BIG-ABAC dynamically updates policies in response to evolving rules and real-time contextual attributes,ensuring precise and efficient access control.Leveraging decision trees evaluated in real-time,BIG-ABAC overcomes the limitations of conventional access control models,enabling seamless adaptation to complex,high-demand scenarios.The framework adheres to the NIST ABAC standard while incorporating modern distributed streaming technologies to enhance scalability and traceability.Its flexible policy enforcement mechanisms facilitate the implementation of regulatory requirements such as HIPAA and GDPR,allowing organizations to align access control policies with compliance needs dynamically.Performance evaluations demonstrate that BIG-ABAC processes 95% of access requests within 50 ms and updates policies dynamically with a latency of 30 ms,significantly outperforming traditional ABAC models.These results establish BIG-ABAC as a benchmark for adaptive,scalable,and context-aware access control,making it an ideal solution for dynamic,high-risk domains such as healthcare,smart cities,and Industrial IoT(IIoT).
基金funded by the National Natural Science Foundation of China(No.42220104008)。
文摘Research into metamorphism plays a pivotal role in reconstructing the evolution of continent,particularly through the study of ancient rocks that are highly susceptible to metamorphic alterations due to multiple tectonic activities.In the big data era,the establishment of new data platforms and the application of big data methods have become a focus for metamorphic rocks.Significant progress has been made in creating specialized databases,compiling comprehensive datasets,and utilizing data analytics to address complex scientific questions.However,many existing databases are inadequate in meeting the specific requirements of metamorphic research,resulting from a substantial amount of valuable data remaining uncollected.Therefore,constructing new databases that can cope with the development of the data era is necessary.This article provides an extensive review of existing databases related to metamorphic rocks and discusses data-driven studies in this.Accordingly,several crucial factors that need to be taken into consideration in the establishment of specialized metamorphic databases are identified,aiming to leverage data-driven applications to achieve broader scientific objectives in metamorphic research.
基金Research on the Digital Transformation of Financial Management Major and the Training Model of Outstanding Talents(2023122203988)Research on the Integration of Haikou Logistics and Manufacturing Driven by Big Data and Its Consumption Promotion Effect(HKKY2024-ZD-24)。
文摘With the constant changes of the times,China's science and technology have entered a period of rapid development.At the same time,the economic structure is also changing with the changes of the times,and the original Haikou logistics industry in the process is also facing new impacts and challenges.And related enterprises want to stand out in the fierce market competition,we must optimize and upgrade the current industry development situation,promote the integrated development of Haikou logistics and manufacturing industry,to constantly promote the innovative application of digital technology in the logistics industry and manufacturing industry,the formation of a multi-force economic development model.This paper mainly starts with the development status of Haikou logistics,analyzes the importance of the integration of Haikou logistics and manufacturing industry under the background of big data drive,and makes an in-depth discussion on the path of the integration of Haikou logistics and manufacturing industry under the drive of big data,hoping to contribute new strength to the development of social economy.
基金supported by the Scientific Research Foundation of Xinhua College,Ningxia University,ChinaProject name:Preliminary Exploration of Ningxia Solar Photovoltaic Industry Intelligent Big Data Platform Construction Based on NB-IoT(Project No.23XHKY07).
文摘As China’s first new energy comprehensive demonstration zone,Ningxia’s solar photovoltaic(PV)industry has developed rapidly,but it still faces shortcomings in terms of intelligence and digitalization.This study focuses on the application and construction of an intelligent big data platform based on Narrowband Internet of Things(NB-IoT)technology within Ningxia’s solar PV industry.It explores the application trends of digital technology in the energy sector,particularly in the PV industry under the backdrop of energy reform,analyzes the technological development status of the smart energy field both domestically and internationally,and details the research methods and design components of the platform(including the photovoltaic base data platform,outdoor mobile application,remote data system,and back-office management system).The study discusses the opportunities and challenges Ningxia’s PV industry faces and proposes a construction pathway.It provides a theoretical foundation and technical support for the digital transformation of Ningxia’s PV industry,facilitating industrial upgrading and sustainable development.Although the current research is limited to the proposed design scheme,it establishes a basis for future empirical research and platform development.
基金supported by the National Natural Science Foundation of China under Grant 62471493 and 62402257partially supported by the Natural Science Foundation of Shandong Province under Grant ZR2023LZH017,ZR2024MF066 and 2023QF025+2 种基金partially supported by the Open Research Subject of State Key Laboratory of Intelligent Game(No.ZBKF-24-12)partially supported by the Foundation of Key Laboratory of Education Informatization for Nationalities(Yunnan Normal University),the Ministry of Education(No.EIN2024C006)partially supported by the Key Laboratory of Ethnic Language Intelligent Analysis and Security Governance of MOE(No.202306).
文摘As Internet ofThings(IoT)technologies continue to evolve at an unprecedented pace,intelligent big data control and information systems have become critical enablers for organizational digital transformation,facilitating data-driven decision making,fostering innovation ecosystems,and maintaining operational stability.In this study,we propose an advanced deployment algorithm for Service Function Chaining(SFC)that leverages an enhanced Practical Byzantine Fault Tolerance(PBFT)mechanism.The main goal is to tackle the issues of security and resource efficiency in SFC implementation across diverse network settings.By integrating blockchain technology and Deep Reinforcement Learning(DRL),our algorithm not only optimizes resource utilization and quality of service but also ensures robust security during SFC deployment.Specifically,the enhanced PBFT consensus mechanism(VRPBFT)significantly reduces consensus latency and improves Byzantine node detection through the introduction of a Verifiable Random Function(VRF)and a node reputation grading model.Experimental results demonstrate that compared to traditional PBFT,the proposed VRPBFT algorithm reduces consensus latency by approximately 30%and decreases the proportion of Byzantine nodes by 40%after 100 rounds of consensus.Furthermore,the DRL-based SFC deployment algorithm(SDRL)exhibits rapid convergence during training,with improvements in long-term average revenue,request acceptance rate,and revenue/cost ratio of 17%,14.49%,and 20.35%,respectively,over existing algorithms.Additionally,the CPU resource utilization of the SDRL algorithmreaches up to 42%,which is 27.96%higher than other algorithms.These findings indicate that the proposed algorithm substantially enhances resource utilization efficiency,service quality,and security in SFC deployment.
文摘In the new era,the impact of emerging productive forces has permeated every sector of industry.As the core production factor of these forces,data plays a pivotal role in industrial transformation and social development.Consequently,many domestic universities have introduced majors or courses related to big data.Among these,the Big Data Management and Applications major stands out for its interdisciplinary approach and emphasis on practical skills.However,as an emerging field,it has not yet accumulated a robust foundation in teaching theory and practice.Current instructional practices face issues such as unclear training objectives,inconsistent teaching methods and course content,insufficient integration of practical components,and a shortage of qualified faculty-factors that hinder both the development of the major and the overall quality of education.Taking the statistics course within the Big Data Management and Applications major as an example,this paper examines the challenges faced by statistics education in the context of emerging productive forces and proposes corresponding improvement measures.By introducing innovative teaching concepts and strategies,the teaching system for professional courses is optimized,and authentic classroom scenarios are recreated through illustrative examples.Questionnaire surveys and statistical analyses of data collected before and after the teaching reforms indicate that the curriculum changes effectively enhance instructional outcomes,promote the development of the major,and improve the quality of talent cultivation.
文摘In the era of Big Data,the attention economy has emerged as a core logic of capital accumulation,yet behavioral economic explanations fail to penetrate the unconscious drives and desire structures underlying attention investment.This paper adopts Lacan’s topological framework of the three orders(the Real,the Symbolic,and the Imaginary)to conduct a psychoanalytic dissection of the attention economy.It argues that Big Data-driven attention mechanisms essentially manipulate desire across these three orders:algorithms,functioning as the“digital big Other,”exploit the Real’s traumatic surplus and the deferred structure of desire through infinite scroll and traumatic stimuli;regulate identity production in the Symbolic via visibility laws,social currency,and datafication;and construct narcissistic illusions in the Imaginary through filters,filter bubbles,and illusions of hyperconnection.Ultimately,the paper proposes an ethics of lucid attention,calling for critical algorithmic literacy,confrontation with the Real’s lack,dismantling of Imaginary illusions,and reclaiming sovereignty over attention-essential for preserving subjective dignity and human freedom in the digital age.
基金the 2023 Inner Mongolia Public Institution High-Level Talent Introduction Scientific Research Support Project with the start-up funding from Linyi Vocational College。
文摘The paper utilized a standardized methodology to identify prognostic biomarkers in hepatocellular carcinoma(HCC)by analyzing transcriptomic and clinical data from The Cancer Genome Atlas(TCGA)database.The approach,which included stringent data preprocessing,differential gene expression analysis,and Kaplan-Meier survival analysis,provided valuable insights into the genetic underpinnings of HCC.The comprehensive analysis of a dataset involving 370 HCC patients uncovered correlations between survival status and pathological characteristics,including tumor size,lymph node involvement,and distant metastasis.The processed transcriptome dataset,comprising 420 samples and annotating 26,783 genes,served as a robust platform for identifying differential gene expression patterns.Among the significant differential expression genes,the key genes such as FBXO43,HAGLROS,CRISPLD1,LRRC3.DT,and ERN2,were pinpointed,which showed significant associations with patient survival outcomes,indicating their potential as novel prognostic biomarkers.This study can not only enhance the understanding of HCC’s genetic landscape but also establish a blueprint for a standardized process to discover prognostic biomarkers of various diseases using genetic big data.Future research should focus on validating these biomarkers through independent cohorts and exploring their utility in the development of personalized treatment strategies.
文摘In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.
文摘With the comprehensive development of modern information technology,big data technology has been integrated into various industries and has become a pillar technology supporting industrial upgrading and transformation.In enterprise human resource management,big data technology also has a broad application space and important application value.To gain higher market competitiveness and comprehensively improve the quality and efficiency of human resource management,enterprises need to rely on big data technology for comprehensive reform and optimization,thereby building an efficient,fair,open,and scientific human resource management model.This paper analyzes the problems and changes of enterprise human resource management in the era of big data,and then puts forward effective strategies for enterprise human resource management based on the era of big data.
基金Exploration and Practice of the Application of Blockchain Technology to the Cultivation of Compound Talents under the Background of Free Trade Port(HKJG2023-18)。
文摘In the era of big data,the financial industry is undergoing profound changes.By integrating multiple data sources such as transaction records,customer interactions,market trends,and regulatory requirements,big data technology has significantly improved the decision-making efficiency,customer insight,and risk management capabilities of financial institutions.The financial industry has become a pioneer in the application of big data technology,which is widely used in scenarios such as fraud detection,risk management,customer service optimization,and smart transactions.However,financial data security management also faces many challenges,including data breaches,privacy protection,compliance requirements,the complexity of emerging technologies,and the balance between data access and security.This article explores the major challenges of financial data security management,coping strategies,and the evolution of the regulatory environment,and it looks ahead to future trends,highlighting the important role of artificial intelligence and machine learning in financial data security.
基金Supported by Research and Application of Soil Collection Software and Soil Ecological Big Data Platform in Guangxi Woodland(GUILINKEYAN[2022ZC]44)Construction of Soil Information Database and Visualization System for Artificial Forests in Central Guangxi(2023GXZCLK62).
文摘In this paper,the application of agricultural big data in agricultural economic management is deeply explored,and its potential in promoting profit growth and innovation is analyzed.However,challenges persist in data collection and integration,limitations of analytical technologies,talent development,team building,and policy support when applying agricultural big data.Effective application strategies are proposed,including data-driven precision agriculture practices,construction of data integration and management platforms,data security and privacy protection strategies,as well as long-term planning and development strategies for agricultural big data,to maximize its impact on agricultural economic management.Future advancements require collaborative efforts in technological innovation,talent cultivation,and policy support,to realize the extensive application of agricultural big data in agricultural economic management and ensure sustainable industrial development.
基金2025 College Students’Innovation Training Program“Return to Poverty Monitoring and Agricultural Products Sales System”2024 College Students’Innovation Training Program“Promoting Straw Recycling to Accelerate the Sustainable Development of Agriculture”(202413207010)。
文摘With the advancement of the rural revitalization strategy,preventing poverty recurrence among previously impoverished populations has become a crucial social concern.The application of big data technology in poverty recurrence monitoring and agricultural product sales systems can effectively enhance precise identification and early warning capabilities,promoting the sustainable development of rural economies.This paper explores the application of big data technology in poverty recurrence monitoring,analyzes its innovative integration with agricultural product sales systems,and proposes an intelligent monitoring and sales platform model based on big data,aiming to provide a reference for relevant policy formulation.
基金The support provided by the Natural Science Foundation of Hubei Province(Grant No.2021CFA081)the National Natural Science Foundation of China(Grant No.42277160)the fellowship of China Postdoctoral Science Foundation(Grant No.2022TQ0241)is gratefully acknowledged.
文摘The big data generated by tunnel boring machines(TBMs)are widely used to reveal complex rock-machine interactions by machine learning(ML)algorithms.Data preprocessing plays a crucial role in improving ML accuracy.For this,a TBM big data preprocessing method in ML was proposed in the present study.It emphasized the accurate division of TBM tunneling cycle and the optimization method of feature extraction.Based on the data collected from a TBM water conveyance tunnel in China,its effectiveness was demonstrated by application in predicting TBM performance.Firstly,the Score-Kneedle(S-K)method was proposed to divide a TBM tunneling cycle into five phases.Conducted on 500 TBM tunneling cycles,the S-K method accurately divided all five phases in 458 cycles(accuracy of 91.6%),which is superior to the conventional duration division method(accuracy of 74.2%).Additionally,the S-K method accurately divided the stable phase in 493 cycles(accuracy of 98.6%),which is superior to two state-of-the-art division methods,namely the histogram discriminant method(accuracy of 94.6%)and the cumulative sum change point detection method(accuracy of 92.8%).Secondly,features were extracted from the divided phases.Specifically,TBM tunneling resistances were extracted from the free rotating phase and free advancing phase.The resistances were subtracted from the total forces to represent the true rock-fragmentation forces.The secant slope and the mean value were extracted as features of the increasing phase and stable phase,respectively.Finally,an ML model integrating a deep neural network and genetic algorithm(GA-DNN)was established to learn the preprocessed data.The GA-DNN used 6 secant slope features extracted from the increasing phase to predict the mean field penetration index(FPI)and torque penetration index(TPI)in the stable phase,guiding TBM drivers to make better decisions in advance.The results indicate that the proposed TBM big data preprocessing method can improve prediction accuracy significantly(improving R2s of TPI and FPI on the test dataset from 0.7716 to 0.9178 and from 0.7479 to 0.8842,respectively).
文摘In order to improve the competitiveness of smart tourist attractions in the tourism market,this paper selects a scenic spot in Shenyang and uses big data technology to predict the passenger flow of the scenic spot.Firstly,this paper introduces the big data-driven forecast model of scenic spot passenger flow.Based on the traditional autoregressive integral moving average model and artificial neural network model,it builds a big data analysis and forecast model.Through the analysis of data source,model building,scenic spot passenger flow accuracy,and modeling time comparison,it affirms the advantages of big data analysis in forecasting scenic spot passenger flow.Finally,it puts forward four commercial operation optimization strategies:adjusting the ticket pricing of scenic spots,upgrading the catering and accommodation services in scenic spots,planning and designing play projects,and formulating accurate scenic spot marketing strategies,in order to provide references for the optimization and upgrading of smart tourist attractions in the future.