The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster predic...The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions.展开更多
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler...The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.展开更多
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an...There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering.展开更多
Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associativ...Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix_algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters,the connection matrix and the Lipschitz constant of the activation functions,are not only simple and practical,but also easier to check and less conservative than those imposed by similar results in recent literature.展开更多
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation...In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.展开更多
In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the opti...In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.展开更多
The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlighte...The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability.展开更多
The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes th...The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft.展开更多
Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this pap...Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.展开更多
Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For...Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For the Hopfield neural network with time delays, a new sufficient condition ensuring the existence, uniqueness and global exponential stability of the equilibrium point is derived. This criterion concerning the signs of entries in the connection matrix imposes constraints on the feedback matrix independently of the delay parameters. From a new viewpoint, the bidirectional associative memory neural network with time delays is investigated and a new global exponential stability result is given.展开更多
Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, t...Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.展开更多
Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtempora...Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.展开更多
Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network mode...Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).展开更多
This paper is concerned with inertial bidirectional associative memory neural networks with mixed delays and impulsive effects.New and practical conditions are given to study the existence,uniqueness,and global expone...This paper is concerned with inertial bidirectional associative memory neural networks with mixed delays and impulsive effects.New and practical conditions are given to study the existence,uniqueness,and global exponential stability of anti-periodic solutions for the suggested system.We use differential inequality techniques to prove our main results.Finally,we give an illustrative example to demonstrate the effectiveness of our new results.展开更多
To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which inte...To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.展开更多
Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix...Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.展开更多
We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-tim...We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks.展开更多
In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By inge...In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1,2, …, n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application.展开更多
基金supported by the National Research and Development Program(2022YFC3004603)the Jiangsu Province International Collaboration Program-Key National Industrial Technology Research and Development Cooperation Projects(BZ2023050)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20221109)the National Natural Science Foundation of China(52274098).
文摘The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions.
基金supported by the National Key Research and Development Project(Grant Number 2023YFB3709601)the National Natural Science Foundation of China(Grant Numbers 62373215,62373219,62073193)+2 种基金the Key Research and Development Plan of Shandong Province(Grant Numbers 2021CXGC010204,2022CXGC020902)the Fundamental Research Funds of Shandong University(Grant Number 2021JCG008)the Natural Science Foundation of Shandong Province(Grant Number ZR2023MF100).
文摘The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life.
文摘There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering.
文摘Without assuming the smoothness,monotonicity and boundedness of the activation functions, some novel criteria on the existence and global exponential stability of equilibrium point for delayed bidirectional associative memory (BAM) neural networks are established by applying the Liapunov functional methods and matrix_algebraic techniques. It is shown that the new conditions presented in terms of a nonsingular M matrix described by the networks parameters,the connection matrix and the Lipschitz constant of the activation functions,are not only simple and practical,but also easier to check and less conservative than those imposed by similar results in recent literature.
基金supported by the National Major Science and Technology Special Project(No.2016ZX05026-002).
文摘In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.
文摘In this paper we propose a new discrete bidirectional associative memory (DBAM) which is derived from our previous continuous linear bidirectional associative memory (LBAM). The DBAM performs bidirectionally the optimal associative mapping proposed by Kohonen. Like LBAM and NBAM proposed by one of the present authors,the present BAM ensures the guaranteed recall of all stored patterns,and possesses far higher capacity compared with other existing BAMs,and like NBAM, has the strong ability to suppress the noise occurring in the output patterns and therefore reduce largely the spurious patterns. The derivation of DBAM is given and the stability of DBAM is proved. We also derive a learning algorithm for DBAM,which has iterative form and make the network learn new patterns easily. Compared with NBAM the present BAM can be easily implemented by software.
文摘The multiple classifier system (MCS), composed of multiple diverse classifiers or feed-forward neural networks, can significantly improve the classification or generalization ability of a single classifier. Enlightened by the fundamental idea of MCS, the ensemble is introduced into the quick learning for bidirectional associative memory (QLBAM) to construct a BAM ensemble, for improving the storage capacity and the error-correction capability without destroying the simple structure of the component BAM. Simulations show that, with an appropriate "overproduce and choose" strategy or "thinning" algorithm, the proposed BAM ensemble significantly outperforms the single QLBAM in both storage capacity and noise-tolerance capability.
基金Supported by National Natural Science Foundation of China(Grant No.52205045)National Key Research and Development Program of China(Grant No.2021YFB2011300)+2 种基金Aeronautical Science Foundation of China(Grant No.2022Z029051001)Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ24E050006)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Nanjing University of Aeronautics and Astronautics)(Grant No.MCAS-E-0224G01).
文摘The aircraft braking system is critical to ensure the safe take-off and landing of the aircraft.However,the braking system is often exposed to high temperatures and strong vibration working environments,which makes the sensor prone to failure.Sensor failure has the potential to compromise aircraft safety.In order to improve the safety of the aircraft braking system,a fault detection and fault-tolerant control(FDFTC)strategy for the aircraft brake pressure sensor is designed.Firstly,a model based on a bidirectional long short-term memory(Bi-LSTM)network is constructed to estimate the brake pressure.Then,the residual sequence is obtained by comparing the measured pressure with the estimated pressure.On this basis,the improved sequential probability ratio test(SPRT)method based on mathematical statistics is applied to analyze the residual sequence to detect the fault.Finally,simulation and hardware-in-the-loop(HIL)testing results indicate that the proposed FDFTC strategy can detect sensor faults in time and efficiently complete braking when faults occur.Hence,the proposed FDFTC strategy can effectively deal with the faults of the aircraft brake pressure sensor,which is of great significance to improve the reliability and safety of the aircraft.
基金funded by the Artificial Intelligence Technology Project of Xi’an Science and Technology Bureau in China(No.21RGZN0014)。
文摘Accurate insight into the heat generation rate(HGR) of lithium-ion batteries(LIBs) is one of key issues for battery management systems to formulate thermal safety warning strategies in advance.For this reason,this paper proposes a novel physics-informed neural network(PINN) approach for HGR estimation of LIBs under various driving conditions.Specifically,a single particle model with thermodynamics(SPMT) is first constructed for extracting the critical physical knowledge related with battery HGR.Subsequently,the surface concentrations of positive and negative electrodes in battery SPMT model are integrated into the bidirectional long short-term memory(BiLSTM) networks as physical information.And combined with other feature variables,a novel PINN approach to achieve HGR estimation of LIBs with higher accuracy is constituted.Additionally,some critical hyperparameters of BiLSTM used in PINN approach are determined through Bayesian optimization algorithm(BOA) and the results of BOA-based BiLSTM are compared with other traditional BiLSTM/LSTM networks.Eventually,combined with the HGR data generated from the validated virtual battery,it is proved that the proposed approach can well predict the battery HGR under the dynamic stress test(DST) and worldwide light vehicles test procedure(WLTP),the mean absolute error under DST is 0.542 kW/m^(3),and the root mean square error under WLTP is1.428 kW/m^(3)at 25℃.Lastly,the investigation results of this paper also show a new perspective in the application of the PINN approach in battery HGR estimation.
基金Project supported by the National Natural Science Foundation of China (No.69982003, No.60074005).
文摘Without assuming the boundedness, strict monotonicity and differentiability of the activation functions, the authors utilize the Lyapunov functional method to analyze the global convergence of some delayed models. For the Hopfield neural network with time delays, a new sufficient condition ensuring the existence, uniqueness and global exponential stability of the equilibrium point is derived. This criterion concerning the signs of entries in the connection matrix imposes constraints on the feedback matrix independently of the delay parameters. From a new viewpoint, the bidirectional associative memory neural network with time delays is investigated and a new global exponential stability result is given.
基金supported by the National Natural Science Foundation of China(Grant No.69971018).
文摘Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.
基金supported by the Key Research&Development Plan Project of Shandong Province,China(No.2017GGX10127).
文摘Continuous sign language recognition(CSLR)is challenging due to the complexity of video background,hand gesture variability,and temporal modeling difficulties.This work proposes a CSLR method based on a spatialtemporal graph attention network to focus on essential features of video series.The method considers local details of sign language movements by taking the information on joints and bones as inputs and constructing a spatialtemporal graph to reflect inter-frame relevance and physical connections between nodes.The graph-based multihead attention mechanism is utilized with adjacent matrix calculation for better local-feature exploration,and short-term motion correlation modeling is completed via a temporal convolutional network.We adopted BLSTM to learn the long-termdependence and connectionist temporal classification to align the word-level sequences.The proposed method achieves competitive results regarding word error rates(1.59%)on the Chinese Sign Language dataset and the mean Jaccard Index(65.78%)on the ChaLearn LAP Continuous Gesture Dataset.
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is ad- vanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs’ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).
文摘This paper is concerned with inertial bidirectional associative memory neural networks with mixed delays and impulsive effects.New and practical conditions are given to study the existence,uniqueness,and global exponential stability of anti-periodic solutions for the suggested system.We use differential inequality techniques to prove our main results.Finally,we give an illustrative example to demonstrate the effectiveness of our new results.
基金Project (No. 60074008) supported by the National Natural Science Foundation of China
文摘To facilitate stability analysis of discrete-time bidirectional associative memory (BAM) neural networks, they were converted into novel neural network models, termed standard neural network models (SNNMs), which interconnect linear dynamic systems and bounded static nonlinear operators. By combining a number of different Lyapunov functionals with S-procedure, some useful criteria of global asymptotic stability and global exponential stability of the equilibrium points of SNNMs were derived. These stability conditions were formulated as linear matrix inequalities (LMIs). So global stability of the discrete-time BAM neural networks could be analyzed by using the stability results of the SNNMs. Compared to the existing stability analysis methods, the proposed approach is easy to implement, less conservative, and is applicable to other recurrent neural networks.
基金Supported by the National Natural Science Foundation of China (6067402760875039)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (20050446001)Scientific Research Foundation of Qufu Normal University
文摘Several novel stability conditions for BAM neural networks with time-varying delays are studied.Based on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural networks.These criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.
基金This project was supported by the National Natural Science Foundation of China (60074008) .
文摘We propose a new approach for analyzing the global asymptotic stability of the extended discrete-time bidirectional associative memory (BAM) neural networks. By using the Euler rule, we discretize the continuous-time BAM neural networks as the extended discrete-time BAM neural networks with non-threshold activation functions. Here we present some conditions under which the neural networks have unique equilibrium points. To judge the global asymptotic stability of the equilibrium points, we introduce a new neural network model - standard neural network model (SNNM). For the SNNMs, we derive the sufficient conditions for the global asymptotic stability of the equilibrium points, which are formulated as some linear matrix inequalities (LMIs). We transform the discrete-time BAM into the SNNM and apply the general result about the SNNM to the determination of global asymptotic stability of the discrete-time BAM. The approach proposed extends the known stability results, has lower conservativeness, can be verified easily, and can also be applied to other forms of recurrent neural networks.
基金This work was supported by scientific research foundation of affairs concerning national living abroad office of the State Council.
文摘In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1,2, …, n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application.