We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the micr...We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.展开更多
Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) mod...Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.展开更多
In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values i...In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method.展开更多
To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed,...To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.展开更多
结合遗传算法和模拟退火算法,构造出具有全局搜索优化特性的遗传模拟退火算法。根据空间目标表面的多组多角度双向反射分布函数(bidirectional reflectance distribution function,BRDF)实验数据和统计模型,获得样片BRDF五参数模型参数...结合遗传算法和模拟退火算法,构造出具有全局搜索优化特性的遗传模拟退火算法。根据空间目标表面的多组多角度双向反射分布函数(bidirectional reflectance distribution function,BRDF)实验数据和统计模型,获得样片BRDF五参数模型参数值及2D、3D的BRDF分布。比较基本遗传算法和遗传模拟退火算法在迭代次数、计算时间、参数值及精度等之间的差异并分析其原因。遗传模拟退火算法更适用于BRDF的统计建模。展开更多
文摘We present a bidirectional reflection distribution function (BRDF) model for thermal coating surfaces based on a three-component reflection assumption, in which the specular reflection is given according to the microfacet theory and Snell's law, the multiple reflection is considered Nth cosine distributed, and the volume scattering is uniformly distributed in reflection angles according to the experimental results. This model describes the reflection characteristics of thermal coating surfaces more completely and reasonably. Simulation and measurement results of two thermal coating samples SR107 and S781 are given to validate that this three-component model significantly improves the modeling accuracy for thermal coating surfaces compared with the existing BRDF models.
文摘Based on the three-component assumption that the reflection is divided into specular reflection,directional diffuse reflection,and ideal diffuse reflection,a bidirectional reflectance distribution function(BRDF) model of metallic materials is presented.Compared with the two-component assumption that the reflection is composed of specular reflection and diffuse reflection,the three-component assumption divides the diffuse reflection into directional diffuse and ideal diffuse reflection.This model effectively resolves the problem that constant diffuse reflection leads to considerable error for metallic materials.Simulation and measurement results validate that this three-component BRDF model can improve the modeling accuracy significantly and describe the reflection properties in the hemisphere space precisely for the metallic materials.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61225002), the Aeronautical Science Fund and Aviation Key Laboratory of Science and Technology on Avionics Integrated Sensor System Simulation, China (Grant No. 20132081015), and the Fundamental Research Funds for the Central Universities, China (Grant No. SPSZ031403)
文摘In this study, the bidirectional reflectance distribution function (BRDF) of a one-dimensional conducting rough surface and a dielectric rough surface are calculated with different frequencies and roughness values in the microwave band by using the method of moments, and the relationship between the bistatic scattering coefficient and the BRDF of a rough surface is expressed. From the theory of the parameters of the rough surface BRDF, the parameters of the BRDF are obtained using a genetic algorithm. The BRDF of a rough surface is calculated using the obtained parameter values. Further, the fitting values and theoretical calculations of the BRDF are compared, and the optimization results are in agreement with the theoretical calculation results. Finally, a reference for BRDF modeling of a Gaussian rough surface in the microwave band is provided by the proposed method.
基金supported by the Jilin Province Science and Technology Development Plan Item (No.20240402068GH)。
文摘To identify coatings and analyze the anti-detection capabilities of camouflage patterns, material samples can be prepared using the super-pixel segmentation method. A spectral polarization imaging system is developed, based on the principle of bidirectional reflectance distribution function(BRDF), to obtain spectral reflection intensities of coatings at full spatial angles, and use polarization images to calculate the refractive index by the Fresnel equation. The index is then coupled into TorranceSparrow model to simulate the spectral scattering intensity to mutually verify the experimental results. The spectral scattering characteristics of standard camouflage patterns are then revealed and pinpoint the signature band and the angle of reflecting sensitivity.
文摘结合遗传算法和模拟退火算法,构造出具有全局搜索优化特性的遗传模拟退火算法。根据空间目标表面的多组多角度双向反射分布函数(bidirectional reflectance distribution function,BRDF)实验数据和统计模型,获得样片BRDF五参数模型参数值及2D、3D的BRDF分布。比较基本遗传算法和遗传模拟退火算法在迭代次数、计算时间、参数值及精度等之间的差异并分析其原因。遗传模拟退火算法更适用于BRDF的统计建模。