期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network
1
作者 Yongfeng Tai Xingyu Yan +3 位作者 Xiangyi Geng Lin Mu Mingshun Jiang Faye Zhang 《Structural Durability & Health Monitoring》 2025年第2期365-383,共19页
The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through acceler... The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee.In engineering scenarios,only a small amount of bearing performance degradation data can be obtained through accelerated life testing.In the absence of lifetime data,the hidden long-term correlation between performance degradation data is challenging to mine effectively,which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method.To address this problem,a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed.Firstly,a nonlinear health indicator(HI)calculation method based on kernel principal component analysis(KPCA)and exponential weighted moving average(EWMA)is designed.Then,using the raw vibration data and HI,a multi-layer perceptron(MLP)neural network is trained to further calculate the HI of the online bearing in real time.Furthermore,The bidirectional long short-term memory model(BiLSTM)optimized by particle swarm optimization(PSO)is used to mine the time series features of HI and predict the remaining service life.Performance verification experiments and comparative experiments are carried out on the XJTU-SY bearing open dataset.The research results indicate that this method has an excellent ability to predict future HI and remaining life. 展开更多
关键词 Remaining useful life prediction rolling bearing health indicator construction multilayer perceptron bidirectional long short-term memory network
在线阅读 下载PDF
Coal burst spatio‑temporal prediction method based on bidirectional long short‑term memory network
2
作者 Xu Yang Yapeng Liu +4 位作者 Anye Cao Yaoqi Liu Changbin Wang Weiwei Zhao Qiang Niu 《International Journal of Coal Science & Technology》 2025年第1期228-245,共18页
The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster predic... The increasingly severe state of coal burst disaster has emerged as a critical factor constraining coal mine safety production,and it has become a challenging task to enhance the accuracy of coal burst disaster prediction.To address the issue of insufficient exploration of the spatio-temporal characteristic of microseismic data and the challenging selection of the optimal time window size in spatio-temporal prediction,this paper integrates deep learning methods and theory to propose a novel coal burst spatio-temporal prediction method based on Bidirectional Long Short-Term Memory(Bi-LSTM)network.The method involves three main modules,including microseismic spatio-temporal characteristic indicators construction,temporal prediction model,and spatial prediction model.To validate the effectiveness of the proposed method,engineering application tests are conducted at a high-risk working face in the Ordos mining area of Inner Mongolia,focusing on 13 high-energy microseismic events with energy levels greater than 105 J.In terms of temporal prediction,the analysis indicates that the temporal prediction results consist of 10 strong predictions and 3 medium predictions,and there is no false alarm detected throughout the entire testing period.Moreover,compared to the traditional threshold-based coal burst temporal prediction method,the accuracy of the proposed method is increased by 38.5%.In terms of spatial prediction,the distribution of spatial prediction results for high-energy events comprises 6 strong hazard predictions,3 medium hazard predictions,and 4 weak hazard predictions. 展开更多
关键词 Coal burst Spatio-temporal prediction Microseismic spatio-temporal characteristic indicators bidirectional long short-term memory network
在线阅读 下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
3
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
在线阅读 下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:7
4
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) Real-time cutter-head torque prediction bidirectional long short-term memory (BLSTM) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
在线阅读 下载PDF
Remaining Useful Life Prediction of Turbofan Engine Using Hybrid Model Based on Autoencoder and Bidirectional Long Short-Term Memory 被引量:9
5
作者 SONG Ya SHI Guo +2 位作者 CHEN Leyi HUANG Xinpei XIA Tangbin 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期85-94,共10页
Turbofan engine is a critical aircraft component with complex structure and high-reliability requirements. Effectively predicting the remaining useful life(RUL) of turbofan engines has essential significance for devel... Turbofan engine is a critical aircraft component with complex structure and high-reliability requirements. Effectively predicting the remaining useful life(RUL) of turbofan engines has essential significance for developing maintenance strategies and reducing maintenance costs. Considering the characteristics of large sample size and high dimension of monitoring data, a hybrid health condition prediction model integrating the advantages of autoencoder and bidirectional long short-term memory(BLSTM) is proposed to improve the prediction accuracy of RUL. Autoencoder is used as a feature extractor to compress condition monitoring data. BLSTM is designed to capture the bidirectional long-range dependencies of features. A hybrid deep learning prediction model of RUL is constructed. This model has been tested on a benchmark dataset. The results demonstrate that this autoencoder-BLSTM hybrid model has a better prediction accuracy than the existing methods, such as multi-layer perceptron(MLP), support vector regression(SVR), convolutional neural network(CNN) and long short-term memory(LSTM). The proposed model can provide strong support for the health management and maintenance strategy development of turbofan engines. 展开更多
关键词 remaining useful life(RUL) autoencoder bidirectional long short-term memory(BLSTM) deep learning
原文传递
Landslide displacement prediction based on optimized empirical mode decomposition and deep bidirectional long short-term memory network 被引量:4
6
作者 ZHANG Ming-yue HAN Yang +1 位作者 YANG Ping WANG Cong-ling 《Journal of Mountain Science》 SCIE CSCD 2023年第3期637-656,共20页
There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement an... There are two technical challenges in predicting slope deformation.The first one is the random displacement,which could not be decomposed and predicted by numerically resolving the observed accumulated displacement and time series of a landslide.The second one is the dynamic evolution of a landslide,which could not be feasibly simulated simply by traditional prediction models.In this paper,a dynamic model of displacement prediction is introduced for composite landslides based on a combination of empirical mode decomposition with soft screening stop criteria(SSSC-EMD)and deep bidirectional long short-term memory(DBi-LSTM)neural network.In the proposed model,the time series analysis and SSSC-EMD are used to decompose the observed accumulated displacements of a slope into three components,viz.trend displacement,periodic displacement,and random displacement.Then,by analyzing the evolution pattern of a landslide and its key factors triggering landslides,appropriate influencing factors are selected for each displacement component,and DBi-LSTM neural network to carry out multi-datadriven dynamic prediction for each displacement component.An accumulated displacement prediction has been obtained by a summation of each component.For accuracy verification and engineering practicability of the model,field observations from two known landslides in China,the Xintan landslide and the Bazimen landslide were collected for comparison and evaluation.The case study verified that the model proposed in this paper can better characterize the"stepwise"deformation characteristics of a slope.As compared with long short-term memory(LSTM)neural network,support vector machine(SVM),and autoregressive integrated moving average(ARIMA)model,DBi-LSTM neural network has higher accuracy in predicting the periodic displacement of slope deformation,with the mean absolute percentage error reduced by 3.063%,14.913%,and 13.960%respectively,and the root mean square error reduced by 1.951 mm,8.954 mm and 7.790 mm respectively.Conclusively,this model not only has high prediction accuracy but also is more stable,which can provide new insight for practical landslide prevention and control engineering. 展开更多
关键词 Landslide displacement Empirical mode decomposition Soft screening stop criteria Deep bidirectional long short-term memory neural network Xintan landslide Bazimen landslide
原文传递
Power entity recognition based on bidirectional long short-term memory and conditional random fields 被引量:9
7
作者 Zhixiang Ji Xiaohui Wang +1 位作者 Changyu Cai Hongjian Sun 《Global Energy Interconnection》 2020年第2期186-192,共7页
With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service respons... With the application of artificial intelligence technology in the power industry,the knowledge graph is expected to play a key role in power grid dispatch processes,intelligent maintenance,and customer service response provision.Knowledge graphs are usually constructed based on entity recognition.Specifically,based on the mining of entity attributes and relationships,domain knowledge graphs can be constructed through knowledge fusion.In this work,the entities and characteristics of power entity recognition are analyzed,the mechanism of entity recognition is clarified,and entity recognition techniques are analyzed in the context of the power domain.Power entity recognition based on the conditional random fields (CRF) and bidirectional long short-term memory (BLSTM) models is investigated,and the two methods are comparatively analyzed.The results indicated that the CRF model,with an accuracy of 83%,can better identify the power entities compared to the BLSTM.The CRF approach can thus be applied to the entity extraction for knowledge graph construction in the power field. 展开更多
关键词 Knowledge graph Entity recognition Conditional Random Fields(CRF) bidirectional long short-term memory(BLSTM)
在线阅读 下载PDF
Seismic-inversion method for nonlinear mapping multilevel well–seismic matching based on bidirectional long short-term memory networks
8
作者 Yue You-Xi Wu Jia-Wei Chen Yi-Du 《Applied Geophysics》 SCIE CSCD 2022年第2期244-257,308,共15页
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation... In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect. 展开更多
关键词 bidirectional recurrent neural networks long short-term memory nonlinear mapping well–seismic matching seismic inversion
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
9
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization algorithm Convolutional Neural Network long short-term memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
10
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(LSTM) principal component analysis(PCA)
在线阅读 下载PDF
基于优化VMD和BiLSTM的短期负荷预测 被引量:3
11
作者 谢国民 陆子俊 《电力系统及其自动化学报》 北大核心 2025年第4期30-39,共10页
针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集... 针对电力负荷数据周期性强、波动性高,预测效果不佳的问题,建立一种基于优化变分模态分解、改进沙猫群优化(improved sand cat swarm optimization,ISCSO)算法和双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的集成预测模型。首先,对原始电力负荷数据进行变分模态分解,降低数据复杂度,在变分模态分解中,引入白鲸算法对分解层数和惩罚因子寻优,优化分解效果。其次,采用Logistic混沌映射、螺旋搜索和麻雀思想引入的多策略改进方法,增加原始沙猫群优化算法的种群多样性,提升收敛精度和全局搜索能力,并用改进后的算法对BiLSTM中的超参数进行优化。然后,结合AdaBoost集成学习算法构建ISCSO-Bi LSTM-AdaBoost预测模型,将分解后的各分量输入模型预测。最后将各预测值叠加,得到最终预测结果。实验结果表明,本文建立的组合模型预测精度高,稳定性强。 展开更多
关键词 电力负荷预测 变分模态分解 双向长短期记忆网络 改进沙猫群优化算法 集成学习算法
在线阅读 下载PDF
基于改进BILSTM/BIGRU的多特征短期负荷预测 被引量:2
12
作者 王昊 王树东 唐伟强 《计算机与数字工程》 2025年第3期755-759,864,共6页
针对传统神经网络在多输入特征下预测时间较长且精度欠佳的问题,论文提出了一种基于深度双向策略改进的长短期记忆神经网络与门控循环单元神经网络相结合的短期负荷预测模型。该模型采用自适应噪声完整集成经验模态算法将负荷数据进行分... 针对传统神经网络在多输入特征下预测时间较长且精度欠佳的问题,论文提出了一种基于深度双向策略改进的长短期记忆神经网络与门控循环单元神经网络相结合的短期负荷预测模型。该模型采用自适应噪声完整集成经验模态算法将负荷数据进行分解,降低负荷数据复杂度;利用互信息主成分分析法提取原始多维输入变量,降低主成分因子;然后通过改进鲸鱼优化算法对构建模型进行寻参优化。以中国某地区的负荷数据作为算例,将论文所构建模型与其它模型进行了对比分析,预测结果表明,论文所构建的模型能够缩短预测的时间,提高负荷预测的精度。 展开更多
关键词 负荷预测 深度双向策略 改进鲸鱼优化算法 长短期记忆神经网络 门控循坏单元神经网络
在线阅读 下载PDF
基于BiLSTM-Attention的议论文篇章要素识别 被引量:1
13
作者 刘佳旭 白再冉 张艳菊 《计算机系统应用》 2025年第5期202-211,共10页
篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利... 篇章要素识别(discourse element identification)的主要任务是识别篇章要素单元并进行分类.针对篇章要素识别对上下文依赖性理解不足的问题,提出一种基于BiLSTM-Attention的识别篇章要素模型,提高议论文篇章要素识别的准确率.该模型利用句子结构和位置编码来识别句子的成分关系,通过双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)进一步获得深层次上下文相关联的信息;引入注意力机制(attention mechanism)优化模型特征向量,提高文本分类的准确度;最终用句间多头自注意力(multi-head self-attention)获取句子在内容和结构上的关系,弥补距离较远的句子依赖问题.相比于HBiLSTM、BERT等基线模型,在相同参数、相同实验条件下,中文数据集和英文数据集上准确率分别提升1.3%、3.6%,验证了该模型在篇章要素识别任务中的有效性. 展开更多
关键词 双向长短期记忆网络 注意力机制 位置编码 篇章要素识别 多头注意力
在线阅读 下载PDF
基于KOA-BiLSTM的矿井淋水井筒风温预测模型及可解释性分析
14
作者 秦跃平 唐飞 +3 位作者 王海蓉 王鹏 郭铭彦 王世斌 《中国安全科学学报》 北大核心 2025年第7期40-47,共8页
为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同... 为提高矿井淋水井筒风温预测的准确性、稳定性及模型的可解释性,首先,通过皮尔逊相关性系数分析特征变量;其次,采用开普勒优化算法(KOA)优化双向长短期记忆网络(BiLSTM)模型,建立基于KOA-BiLSTM的矿井淋水井筒风温预测模型;然后,在相同样本条件下,与反向传播(BP)、随机森林(RF)、最小二乘增强(LSBoost)和支持向量机(SVM)算法进行综合对比;最后,利用沙普利可加性特征解释算法(SHAP)进行可解释性分析及实例验证。研究结果表明:KOA-BiLSTM模型的绝对误差范围为-1.24~0.5℃,比优化前模型的预测精度提高3.98%;与另外4个模型相比,该模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方误差(MSE)等均为最佳,表明该模型具有最优的预测效果和泛化能力;SHAP分析表明:井口风流温度对预测结果影响最大,而地面压力影响最小;KOA-BiLSTM模型实例验证的绝对误差范围为-0.49~0.38℃,预测精度可满足实际工作需要。 展开更多
关键词 开普勒优化算法(KOA)-双向长短期记忆网络(bilstm)模型 淋水井筒 风温预测模型 可解释性分析 皮尔逊相关性
原文传递
以霜冰优化算法优化CNN-BiLSTM-Attention的参考蒸散量估算
15
作者 付桐林 金晶 《中国沙漠》 北大核心 2025年第3期302-312,共11页
有限气象参数条件下借助于深度学习实现蒸散量的准确估算对干旱区有限水资源的高效利用和管理具有重要意义。当前基于混合深度学习模型CNN-Bi LSTM-Attention的蒸散发估算忽视了参数优化,导致估算精度难以契合实际应用需求。本文提出了... 有限气象参数条件下借助于深度学习实现蒸散量的准确估算对干旱区有限水资源的高效利用和管理具有重要意义。当前基于混合深度学习模型CNN-Bi LSTM-Attention的蒸散发估算忽视了参数优化,导致估算精度难以契合实际应用需求。本文提出了一种新的霜冰优化算法(RIME)优化CNN-Bi LSTM-Attention的超参数的混合模型RIME-CNN-Bi LSTM-Attention,实现了有限气象参数条件下临泽县参考蒸散量(ET_(0))的准确预测。与CNN-Bi LSTM-Attention相比,混合模型RIME-CNN-Bi LSTM-Attention的平均绝对百分比误差(MAPE)从14.56%下降到14.09%,可决系数从0.8654上升到0.8930。此外,数值结果表明混合模型RIME-CNN-Bi LSTM-Attention的模型性能优于分别采用哈里斯鹰优化算法(HHO)、鱼鹰优化算法(OOA)、北方苍鹰算法(NGO)对CNN-Bi LSTM-Attention进行优化的混合模型HHO-CNN-Bi LSTM-Attention、OOA-CNN-Bi LSTM-Attention、NGO-CNN-Bi LSTM-Attention,意味着所构建混合模型RIME-CNN-Bi LSTM-Attention具有更加稳健的模型性能和更高的计算精度,能够实现研究区域ET_(0)的准确估算。 展开更多
关键词 参考蒸散量 霜冰优化算法 卷积神经网络 双向长短期记忆网络 注意力机制
原文传递
基于IPOA-MSCNN-BiLSTM-Attention模型的刀具磨损状态识别
16
作者 杨焕峥 崔业梅 +1 位作者 薛洪惠 徐玲 《组合机床与自动化加工技术》 北大核心 2025年第7期158-163,共6页
刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention... 刀具状态监测直接影响产品加工质量,为了提高刀具磨损状态识别的准确性,构建了IPOA-MSCNN-BiLSTM-Attention模型。首先,采用多尺度卷积神经网络(MSCNN)和双向长短时记忆网络(BiLSTM)来学习数据的时空特征;其次,引入注意力机制(Attention)以增强对关键信息的关注度;再次,提出了一种改进的鹈鹕优化算法(IPOA),用于优化模型多尺度卷积神经网络的参数。该算法结合自适应惯性权重因子、柯西变异和麻雀警戒机制策略,在CEC2005至CEC2022的众多函数性能测试中综合表现优于传统POA等5种算法;最后,在工业控制计算机(IPC)上运行了模型。结果表明,该模型在刀具磨损状态识别方面表现出较高的识别精度,可提高加工安全与生产效率。 展开更多
关键词 刀具磨损 状态监测 改进的鹈鹕优化算法 多尺度卷积神经网络 双向长短时记忆网络
在线阅读 下载PDF
基于PSO-GWO-BiLSTM-Attention的换道意图识别预测模型研究
17
作者 陈峥 韦进 +1 位作者 陈博闻 魏福星 《昆明理工大学学报(自然科学版)》 北大核心 2025年第5期172-184,共13页
针对复杂交通场景中车辆换道意图识别准确率不足的问题,提出了一种融合PSO-GWO优化策略与BiLSTM-Attention机制的混合模型.该模型以目标车辆的轨迹序列及其与周围车辆的动态交互特征为输入,利用双向长短期记忆网络(BiLSTM)对时间序列数... 针对复杂交通场景中车辆换道意图识别准确率不足的问题,提出了一种融合PSO-GWO优化策略与BiLSTM-Attention机制的混合模型.该模型以目标车辆的轨迹序列及其与周围车辆的动态交互特征为输入,利用双向长短期记忆网络(BiLSTM)对时间序列数据进行处理,从而挖掘其中的长期依赖特性,并结合注意力机制(Attention)动态调整不同时间步的权重,聚焦关键信息,从而提升识别精度.为了优化模型性能,采用粒子群优化与灰狼优化相结合(PSO-GWO)算法对模型超参数进行多目标寻优,有效解决了传统方法中参数调优困难的问题.将该模型与其他5种模型进行对比,结果表明该模型的意图识别准确率最高,达到94.23%,在换道前2.5 s的识别精度均能达到90%以上,展现了较强的预判能力和鲁棒性,为复杂交通场景下的车辆换道意图识别提供了高效且可靠的解决方案. 展开更多
关键词 换道意图识别 注意力机制 自动驾驶 粒子群算法 双向长短期记忆网络
原文传递
融合BiLSTM与CNN的推特黑灰产分类模型 被引量:3
18
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(bilstm) 卷积神经网络(CNN) 黑灰产 推特
在线阅读 下载PDF
基于CGAN和CNN-SE-BiLSTM的极端天气光伏功率超短期预测
19
作者 唐岚 黄力文 王成磊 《电气传动》 2025年第8期58-69,共12页
针对因极端天气出现概率较低导致的光伏发电数据不平衡的问题,提出一种K-means聚类算法和基于Wasserstein距离含梯度惩罚项的条件生成对抗网络实现极端天气数据的分类扩充,并提出了一种结合双向长短期记忆网络与卷积神经网络并融入通道... 针对因极端天气出现概率较低导致的光伏发电数据不平衡的问题,提出一种K-means聚类算法和基于Wasserstein距离含梯度惩罚项的条件生成对抗网络实现极端天气数据的分类扩充,并提出了一种结合双向长短期记忆网络与卷积神经网络并融入通道注意力机制的预测方法,旨在通过整合时空特征和动态调节特征通道重要性来提升光伏功率预测性能。首先,使用相关性分析和K-means算法对多种环境因素进行筛选,并对其进行划分以及添加标签。其次,选择聚类后数量较少的极端天气标签,使用CWGAN-GP对其进行样本扩充。最后,将扩充后的数据集作为训练集训练CNN-SE-BiLSTM预测模型,实现极端天气的光伏功率预测。以某光伏电站数据进行仿真建模,结果表明:使用CGAN-GP对原始极端天气训练集进行扩充有助于提高模型的预测精度。同时,CNN-SE-BiLSTM在五类天气中的预测误差较其他传统模型有更高的预测进度,说明所提方法适用于光伏功率超短期预测。 展开更多
关键词 光伏功率预测 极端天气生成 双向长短期记忆神经网络 Wasserstein距离含梯度惩罚项的条件生成对抗网络 K-MEANS聚类算法
在线阅读 下载PDF
基于相似日和IWOA优化BiLSTM的短期电力负荷预测
20
作者 朱莉 李豪 +2 位作者 汪小豪 姜成龙 曹明海 《中南民族大学学报(自然科学版)》 2025年第4期507-514,共8页
为了有效提升短期负荷预测的精度,提出了一种基于相似日和IWOA优化BiLSTM的短期电力负荷预测模型.该模型首先利用Pearson相关性分析选取负荷的主要影响因素,并利用综合匹配相似度选取相似日,为模型提供更有效的输入;然后研究了一种基于... 为了有效提升短期负荷预测的精度,提出了一种基于相似日和IWOA优化BiLSTM的短期电力负荷预测模型.该模型首先利用Pearson相关性分析选取负荷的主要影响因素,并利用综合匹配相似度选取相似日,为模型提供更有效的输入;然后研究了一种基于非线性控制参数策略和种群变异策略的IWOA算法,对BiLSTM网络的参数进行寻优,构建IWOA-BiLSTM预测模型;最后以澳大利亚真实负荷数据集作为实际算例进行验证,结果表明:该预测模型相较于其他模型获得了更高的预测精度,证明了该方法的有效性. 展开更多
关键词 短期负荷预测 改进鲸鱼优化算法 相似日 双向长短期记忆网络 超参数寻优
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部