期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
一种基于元学习的改进YOLO钢管表面缺陷小样本检测模型 被引量:3
1
作者 李凌波 田彦 +1 位作者 江旭东 董宝力 《机电工程》 北大核心 2025年第5期985-993,共9页
针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取... 针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取了特征图的判别能力;然后,为了提高特征融合能力并降低计算复杂度,通过加权双向特征金字塔网络(BiFPN)结构优化了特征提取器的颈部网络,平衡了YOLO-SBN模型的有效性和效率;最后,采用归一化注意力模块(NAM)优化权重调整了模块,增强了浅层缺陷特征的模型表达,并基于这些增强的特征进行了检测;使用金属表面热轧缺陷公开数据集NEU-DET验证了YOLO-SBN模型的算法性能。研究结果表明:对于小样本缺陷检测,YOLO-SBN模型在平均准确率(mAP)方面提高了4.1%;在新类缺陷样本规模数量为50的小样本情况下,改进后的检测模型对新类数据适应性最强。由此可见,该YOLO-SBN模型在提高检测精度和提升模型泛化能力方面具有一定优势。 展开更多
关键词 小样本目标检测 表面缺陷 元学习 特征网络 归一化注意力模块 平均准确率 双向特征金字塔网络(bifpn)
在线阅读 下载PDF
多尺度和多层级特征融合的人体姿态估计 被引量:2
2
作者 王燕妮 胡敏 +2 位作者 韩世鹏 陈艺瑄 吕昊 《计算机工程与应用》 北大核心 2025年第6期199-209,共11页
人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(m... 人体姿态估计的精度提升通常依赖于特征融合,但是现有特征融合策略往往忽略了尺度特征和层级特征之间的交互作用。为了充分利用不同特征之间的互补性,提出了一种新特征融合策略用以提升人体姿态估计精度,即多尺度和多层级特征融合网络(multi-scale and multi-level network,MSLNet)。采用高分辨率网络(high-resolution network,HRNet)作为主干,通过跨尺度信息交互,实现不同分辨率特征图之间的信息交换,获取同时包含细粒度和粗粒度的姿态特征;引入期望最大化注意力-加权双向特征金字塔网络(expectation maximization attention-bidirectional feature pyramid network,EMA-BiFPN),实现多尺度特征融合后的多层级特征聚合,从局部到全局捕捉人体姿态的细节和关联信息;设计由残差结构组成的关键点检测头,完成输出特征的最终融合并提升人体关键点检测准确率。实验结果表明,MSLNet在COCO和MPII数据集上分别取得了75.8%和91.1%的准确率,实现了最优精度,充分验证了MSLNet能够融合尺度和层级之间的互补特征,进而提升人体姿态估计精度。 展开更多
关键词 高分辨率网络(HRNet) 人体姿态估计 期望最大化注意力 双向特征金字塔网络 特征融合
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别 被引量:1
3
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
基于坐标注意力和加权双向特征金字塔网络的舰载机阻拦着舰拉制状态精准识别
4
作者 李哲 杨杰 +4 位作者 张椅 王华 李亚飞 王可 徐明亮 《中国舰船研究》 北大核心 2025年第4期124-133,共10页
[目的]舰载机着舰安全的关键在于尾钩与阻拦索成功挂索,而现有研究中,借助智能化手段辅助着舰指挥官(LSO)识别阻拦着舰状态的工作较少。为此,提出一种融合坐标注意力和加权双向特征金字塔网络的阻拦着舰拉制状态识别模型。[方法]先使用... [目的]舰载机着舰安全的关键在于尾钩与阻拦索成功挂索,而现有研究中,借助智能化手段辅助着舰指挥官(LSO)识别阻拦着舰状态的工作较少。为此,提出一种融合坐标注意力和加权双向特征金字塔网络的阻拦着舰拉制状态识别模型。[方法]先使用坐标注意力机制(CA)从空间和通道两个维度增强模型捕捉特征的能力;再通过加权双向特征金字塔网络(BiFPN)纳入可学习的权值学习不同输入特征的重要性,实现双向多尺度特征融合;然后采用C2F模块轻量化模型架构,减少参数和计算量;最后通过仿真实验将所提模型与5种基线模型进行对比。[结果]结果表明,在舰载机尾钩和阻拦着舰拉制状态的检测上,该模型综合性能均优于基线模型。[结论]该模型有助于提高尾钩及阻拦索的啮合状态检测的准确率和鲁棒性,对提高舰载机着舰作业的效率、预防潜在的人员伤害和装备损失具有重要意义。 展开更多
关键词 舰载机 阻拦装置 状态识别 双向特征金字塔网络(bifpn) 航空母舰
在线阅读 下载PDF
基于改进YOLOv5的小目标交通标志检测算法
5
作者 李牧 陶启婷 柯熙政 《计算机应用》 北大核心 2025年第S1期239-244,共6页
交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法... 交通标志检测是自动驾驶系统、辅助驾驶系统(DAS)的重要组成部分,对行车安全具有重要意义。针对小目标交通标志检测时受光照、恶劣天气等因素影响而导致的检测精度低、漏检率高等问题,提出一种基于改进YOLOv5的小目标交通标志检测算法。首先,引入空间到深度卷积(SPD-Conv)对特征图进行下采样,有效避免小目标信息丢失,提高小目标敏感度。其次,基于加权双向特征金字塔网络(BiFPN)改进颈部网络,添加跨层连接以融合多尺度特征。之后,增加小目标检测层,增强小目标检测能力。最后,采用SIoU(Shape-aware Intersection over Union)损失函数,关注真实框与预测框的角度信息。实验结果表明,改进后的算法在中国交通标志检测数据集(CCTSDB2021)上的平均精度均值(mAP)达到83.5%,相较于原YOLOv5提升了7.2个百分点,检测速度满足实时性要求。 展开更多
关键词 小目标检测 YOLOv5 交通标志检测 SPD-Conv bifpn
在线阅读 下载PDF
改进YOLOv8算法的胃肠道息肉检测
6
作者 李殿奎 王振豫 +1 位作者 陈育德 武亮 《哈尔滨理工大学学报》 北大核心 2025年第3期32-41,共10页
针对胃肠道息肉检查漏诊率和误诊率较高的问题,研究了一种可用于胃肠道息肉检查的实时检测模型。首先,收集公开的胃肠道息肉图像数据,构建了一个来源广泛,种类丰富的胃肠道息肉数据集;然后,基于YOLOv8算法中的YOLOv8n模型,使用BiFPN模... 针对胃肠道息肉检查漏诊率和误诊率较高的问题,研究了一种可用于胃肠道息肉检查的实时检测模型。首先,收集公开的胃肠道息肉图像数据,构建了一个来源广泛,种类丰富的胃肠道息肉数据集;然后,基于YOLOv8算法中的YOLOv8n模型,使用BiFPN模块替换YOLOv8n模型中的PANet模块来增强模型的特征提取能力,引入Effective SE注意力机制提高模型检测精度,并采用轻量级网络ShuffleNetV2在保证模型检测精度的同时,提高模型的检测速度;最后,在收集到的胃肠道息肉数据集上改进模型的精确率达到96.2%,召回率达到91.6%,mAP@0.5达到96.8%,mAP@0.5∶0.95达到70.8%。实验结果表明,本文改进的模型能够更好的满足胃肠道息肉检查时的精度和速度要求。 展开更多
关键词 目标检测 胃肠道息肉 注意力机制 加权双向特征金字塔网络 轻量级网络
在线阅读 下载PDF
面向复杂战场环境下的长期目标跟踪方法
7
作者 张雷 何舒文 +2 位作者 段晶晶 马增琛 张建伟 《火力与指挥控制》 北大核心 2025年第9期45-53,共9页
针对未来智能化武器装备面向复杂战场环境下的作战需求,设计了一种鲁棒的长期目标跟踪方法。面对高对抗性、高不确定性、高动态性和强实时性的战场环境,以孪生网络跟踪器为基准跟踪框架,建立目标跟踪正确性判断机制,融合双向特征金字塔... 针对未来智能化武器装备面向复杂战场环境下的作战需求,设计了一种鲁棒的长期目标跟踪方法。面对高对抗性、高不确定性、高动态性和强实时性的战场环境,以孪生网络跟踪器为基准跟踪框架,建立目标跟踪正确性判断机制,融合双向特征金字塔框架与重检测机制,构建目标跟踪方法架构,从而实现复杂环境下的长期目标跟踪。实验结果表明,提出的方法相对于基准跟踪方法的平均距离精度提高了6.9%,从而确保作战任务高效、可靠地完成。 展开更多
关键词 复杂战场环境 长期目标跟踪 孪生网络跟踪器 双向特征金字塔 重检测机制
在线阅读 下载PDF
基于改进YOLOX的隧道火灾检测算法
8
作者 马庆禄 邱高建 白锋 《中国安全科学学报》 北大核心 2025年第4期28-34,共7页
针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字... 针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字塔网络(BiFPN)增强特征提取和融合能力,优化α-交并比(IoU)损失函数,以提高对轮廓特征不明显的隧道初期烟雾火焰的检测精度;在现有公开数据集不足的情况下,通过网络采集、模拟试验和扩充现有数据集,构建隧道火灾数据集,在包含真实场景和模拟场景的自建隧道火灾数据集上进行验证。结果表明:相比于原始YOLOX模型,改进后的算法均值平均精度(mAP@0.5)提高1.89%,mAP@0.5~0.95提高0.88%,精确率提高4.57%,召回率提高5.45%,改进后的算法能够实现更优的检测性能。 展开更多
关键词 隧道火灾 YOLOX 火灾检测 归一化注意力模块(NAM) 加权双向特征金字塔网络(bifpn)
原文传递
改进的YOLOv5s模型及应用
9
作者 任伟建 李子昊 +1 位作者 任璐 张永丰 《吉林大学学报(信息科学版)》 2025年第3期591-597,共7页
针对电动自行车头盔佩戴检测存在小目标漏检、准确率低的问题,提出一种基于YOL Ov5s(You Only Look Once version 5 small)的改进电动车头盔检测算法。在主干网络中引入CBAM(Convolutional Block Attention Module)卷积注意力机制,以提... 针对电动自行车头盔佩戴检测存在小目标漏检、准确率低的问题,提出一种基于YOL Ov5s(You Only Look Once version 5 small)的改进电动车头盔检测算法。在主干网络中引入CBAM(Convolutional Block Attention Module)卷积注意力机制,以提升对聚集目标的关注,解决因遮挡导致的检测效果差的问题;将颈部网络中的FPN(Feature Pyramid Network)+PAN(Path Aggregation Network)结构改为结合了跨尺度特征融合方法思想的特征融合结构,增强模型不同方向上的多尺度融合能力,使目标多尺度特征有效融合,提升对小目标的识别能力;使用SIoU(Structured Intersectionover Union)定位损失函数代替CIoU(Complete Intersection over Union)损失函数,以提高边框回归精度。实验结果表明,改进后的YOLOv5s模型准确率P和召回率R分别为94.7%和91.2%,平均精度值mAP为95.6%,相较于原始YOLOv5s模型分别提升6%、7%和6.5%。该方法使电动自行车头盔佩戴检测准确率得到了明显提升。 展开更多
关键词 电动车头盔 YOLOv5s 目标检测 CBAM注意力机制 bifpn网络
在线阅读 下载PDF
基于改进YOLOv9的群养猪身份识别模型
10
作者 陈晨 刘浩然 NORTON Tomas 《中国农业科技导报(中英文)》 北大核心 2025年第10期134-143,共10页
猪攻击过程中会产生身体形变、遮挡等因素,从而导致猪身份难以识别。提出一种基于改进YOLOv9的深度学习算法识别攻击状态下猪身份。从标记的600段1 s攻击视频中产生18000帧图像作为数据集。首先,采用DualConv替换YOLOv9网络的下采样,在... 猪攻击过程中会产生身体形变、遮挡等因素,从而导致猪身份难以识别。提出一种基于改进YOLOv9的深度学习算法识别攻击状态下猪身份。从标记的600段1 s攻击视频中产生18000帧图像作为数据集。首先,采用DualConv替换YOLOv9网络的下采样,在保持精度基础上降低计算量;然后,融合双向特征金字塔改进YOLOv9的颈部网络部分,以提升模型在攻击场景下的特征提取能力;接着,在主干网络的RepNCSPELAN4层后引入局部自注意力机制,以增强模型捕捉局部特征的能力;最后,采用改进的YOLOv9识别猪身份。结果表明,改进的YOLOv9模型识别猪身份的平均精度达93.6%,较基准模型提高3.7百分点,检测速度达31.58帧·s^(-1)。以上表明,改进的YOLOv9算法能有效提升攻击场景下猪身份的识别精度,有助于将攻击识别从群体级细化为个体级。 展开更多
关键词 猪身份识别 深度学习 YOLOv9 双向特征金字塔网络 自注意力机制
在线阅读 下载PDF
YOLOv5算法在钨棒表面缺陷机器视觉检测中的应用
11
作者 陈剑 张小汾 +4 位作者 徐哲壮 张浩然 郑昆鑫 刘驰 林雄 《无损检测》 2025年第6期9-17,共9页
表面缺陷检测是控制钨棒质量的重要环节。由于钨棒检测图像存在背景复杂、噪声干扰多、对比度低、缺陷分辨率低、尺度跨度广等问题,现有YOLOv5算法的检测准确率难以满足工业现场要求。提出一种基于YOLOv5算法的改进算法,首先重构网络模... 表面缺陷检测是控制钨棒质量的重要环节。由于钨棒检测图像存在背景复杂、噪声干扰多、对比度低、缺陷分辨率低、尺度跨度广等问题,现有YOLOv5算法的检测准确率难以满足工业现场要求。提出一种基于YOLOv5算法的改进算法,首先重构网络模型的检测头,利用更多尺度的特征图进行结果预测;其次,在特征提取网络中添加注意力机制,增强算法对于重点特征的提取能力,同时采用加权双向特征金字塔网络结构实现多尺度特征融合,减少特征融合过程中的冗余,提高多尺度目标特征的融合度。试验结果表明,基于改进YOLOv5的钨棒表面缺陷检测算法更适应于具有小尺寸大曲度特点的金属表面缺陷检测,能够显著提高此类检测的准确率和精度。 展开更多
关键词 缺陷检测 深度学习 注意力机制 加权双向特征金字塔网络
在线阅读 下载PDF
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:3
12
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
露天矿山下无人矿卡的轻量级障碍检测算法 被引量:1
13
作者 程铄棋 伊力哈木·亚尔买买提 +2 位作者 谢丽蓉 李熙玉 马颖 《煤炭科学技术》 北大核心 2025年第7期262-274,共13页
随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题... 随着人工智能技术不断发展和智慧矿山理念的逐步推进,传统露天矿山的运营模式正在被自动化方式取代。无人矿卡作为智慧矿山的重要组成部分,其推广应用有效解决了因矿区地形不规则、路面坑洼或恶劣天气等因素导致的矿卡翻车、侧滑等问题,从而显著降低了由此引发的伤亡事故。准确的检测目标类别是做避障决策的前提,而模型轻量化可以在资源有限的条件下很好地部署。因此,针对露天矿山场景下,无人矿卡目标检测算法存在参数量多、模型较大及小目标和遮挡目标检测准确率低的问题,提出轻量级无人矿卡检测算法LWHP(Lightweight High-Precision),设计思路有以下4点:其一,提出高效加权双向的特征金字塔网络R-BiFPN,利用这一结构重构颈部网络,通过跨层连接及双向传播,减少冗余计算路径,并通过加权特征融合方式增强多尺度特征融合能力,提升小目标检测能力的同时大幅度降低参数量;其二,设计带有多头注意力机制的检测解耦头,改善卷积层冗余导致网络复杂的问题,并处理空间维度以集中捕捉目标特征,减弱无关背景干扰,提升遮挡目标识别准确率;其三,利用双重卷积构建轻量级神经网络CDC,增强通道间信息流动,提高模型特征表达能力并降低模型复杂度;其四,引入EIOU损失函数,分别计算目标边界框的宽高差异,并加入Focal Loss解决难易样本不平衡问题,获得更快的收敛速度和更优秀的定位能力。试验表明:改进后算法相较于原始算法参数量降低50.2%,计算量减少46.3%,模型大小压缩47.6%,仅有3.3 MB,且FPS达到92.9,满足实时性需求。精度提升1.6%,召回率提升3.1%,平均精度达到79.6%,相比原模型提升2%,保证轻量级部署的同时提升了检测准确率。 展开更多
关键词 无人矿卡 目标检测 LWHP 轻量化 加权双向特征金字塔网络 多头注意力机制
在线阅读 下载PDF
RO-YOLOv9车辆行人检测算法 被引量:2
14
作者 廖炎华 万学俊 +1 位作者 赵周洲 潘文林 《计算机工程与应用》 北大核心 2025年第11期144-155,共12页
针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and a... 针对道路交通环境中车辆和行人目标较小或被遮挡导致的检测精度低以及误检、漏检问题,提出道路目标检测算法RO-YOLOv9。增加小目标检测层,增强算法对小目标的特征学习能力。设计双向与自适应尺度融合特征金字塔网络(bidirectional and adaptive scale fusion feature pyramid network,BiASF-FPN)结构,优化多尺度特征融合,保证算法有效捕捉从小尺度到大尺度目标的详细信息。提出OR-RepN4模块,通过重参数化策略,复杂算法结构简单化,提高推理速度。引用Shape-NWD(shape neighborhood weighted decomposition)损失函数,专注边界框形状与尺寸,采用归一化高斯Wasserstein距离平滑回归,实现跨尺度不变性,降低小尺度与遮挡目标的检测误差。实验结果表明,在优化后的SODA10M和BDD100K数据集下,RO-YOLOv9算法的mAP@0.5(mean average precision)分别达到68.1%和56.8%,比YLOLOv9算法提高5.6个百分点和4.4个百分点,并且检测帧率分别达到了55.3帧/s和54.2帧/s,达到检测精度和检测速度的平衡。 展开更多
关键词 YOLOv9 小目标检测 双向与自适应尺度融合特征金字塔网络(BiASF-FPN) OR-RepN4 Shape-NWD
在线阅读 下载PDF
基于改进EfficientDet的食品生产线核桃仁分选智能化研究
15
作者 秦新华 王义亮 +1 位作者 李玉贵 李晋 《食品与机械》 北大核心 2025年第8期77-84,共8页
[目的]提高现有食品生产线核桃仁分选的效率和精度。[方法]基于核桃仁分拣的智能化生产线,提出一种改进的EfficientDet模型用于食品生产线核桃仁智能化分选。通过在主干网络引入卷积注意力机制模块,强化模型对食品区域的聚焦能力。通过... [目的]提高现有食品生产线核桃仁分选的效率和精度。[方法]基于核桃仁分拣的智能化生产线,提出一种改进的EfficientDet模型用于食品生产线核桃仁智能化分选。通过在主干网络引入卷积注意力机制模块,强化模型对食品区域的聚焦能力。通过改进双向特征金字塔网络,增强模型对不同尺度食品的检测能力。通过Dynamic ReLU激活函数对原激活函数进行优化,增强模型对食品的检测性能,并将优化后的模型部署于食品生产线进行试验验证。[结果]试验方法在核桃仁分选任务中实现对正常、碎壳、黑斑和干瘪核桃仁的精准识别与高效分类,单张图像检测时间为18 ms,平均精度均值达到97.92%,误检率降至1.0%,可有效提高食品生产线自动化水平。[结论]该智能化分选方法有效解决了传统分选效率低和精度差的问题,在食品生产线自动化领域具有良好的应用前景与推广价值。 展开更多
关键词 食品生产线 核桃仁分选 智能化 EfficientDet模型 双向特征金字塔网络 卷积注意力机制模块
在线阅读 下载PDF
基于改进YOLOv5s的苹果表面缺陷检测
16
作者 吕利俊 伊力哈木·亚尔买买提 《山东农业科学》 北大核心 2025年第6期149-157,共9页
针对苹果表面缺陷检测中存在因苹果重叠或被遮挡造成的检测精度低以及误检漏检等问题,本研究提出一种改进YOLOv5s算法的苹果表面缺陷检测方法。首先,在YOLOv5s模型的Backbone部分加入卷积注意力模块(CBAM),增强检测模型对图像重要区域... 针对苹果表面缺陷检测中存在因苹果重叠或被遮挡造成的检测精度低以及误检漏检等问题,本研究提出一种改进YOLOv5s算法的苹果表面缺陷检测方法。首先,在YOLOv5s模型的Backbone部分加入卷积注意力模块(CBAM),增强检测模型对图像重要区域信息的关注程度,从而提升模型对苹果表面缺陷的检测能力;其次,引入加权双向特征金字塔网络(BiFPN),充分融合不同尺度的苹果表面缺陷特征,以达到减少漏检和误检的目的;最后,使用Soft-NMS算法替代原始网络中的NMS算法,优化冗余边界框筛选条件,进一步降低模型的漏检率。实验结果显示,本研究所提算法的平均精度均值(mAP)达到95.5%,相较于原始算法提升了3.3个百分点,且召回率提升了4.6个百分点,能更好地检测苹果表面缺陷。 展开更多
关键词 苹果表面缺陷检测 YOLOv5s 卷积注意力机制 加权双向特征金字塔网络
在线阅读 下载PDF
基于改进YOLOv5的视网膜黄斑病变分类检测算法
17
作者 王楠楠 吴其洲 +1 位作者 王召巴 金永 《测试技术学报》 2025年第2期130-137,共8页
视网膜黄斑病变是失明的重要原因之一,人工筛查容易出现误诊,而基于深度学习的自动诊断有助于早期的检测和治疗。提出一种基于改进YOLOv5的黄斑病变分类检测算法,针对黄斑病变图像细微特征融合不充分的问题,将YOLOv5颈部的PANet特征融... 视网膜黄斑病变是失明的重要原因之一,人工筛查容易出现误诊,而基于深度学习的自动诊断有助于早期的检测和治疗。提出一种基于改进YOLOv5的黄斑病变分类检测算法,针对黄斑病变图像细微特征融合不充分的问题,将YOLOv5颈部的PANet特征融合模块替换为加权双向特征金字塔网络,实现高效的多尺度特征融合,以获得更好的黄斑病变细节特征;针对小目标病变检测能力差的问题,在模型中引入SK注意力机制,通过自适应地调整感受野,增强对黄斑病变区域特征的捕获。对比实验证明所提算法可将小目标检测准确率由原来的91.9%提升至94.2%,全类平均准确率由原来的93.4%提升到96.6%,且在相同条件下,该算法的表现优于其他目标检测网络模型。 展开更多
关键词 目标检测 视网膜黄斑病变 加权双向特征金字塔网络 注意力机制
在线阅读 下载PDF
基于RT-DETR改进的织物疵点检测算法
18
作者 朱胜利 李明 何志奇 《毛纺科技》 北大核心 2025年第8期118-127,共10页
为了解决织物疵点检测中疵点类型多、大小不平衡和小目标疵点难以检测的问题,基于RT-DETR(Real-Time DEtection TRansformer)提出了一种改进的织物疵点检测算法FD-DETR(Fabric Defect-DETR)。将可变形注意力机制模块DA(Deformable Atten... 为了解决织物疵点检测中疵点类型多、大小不平衡和小目标疵点难以检测的问题,基于RT-DETR(Real-Time DEtection TRansformer)提出了一种改进的织物疵点检测算法FD-DETR(Fabric Defect-DETR)。将可变形注意力机制模块DA(Deformable Attention)引入特征交互模块AIFI(Attention-based Intrascale Feature Interaction)来增强算法对疵点感受野的适应性,以更好地实现对不同类型和不同大小疵点的检测;在Neck层将Slim-Neck与加权双向特征金字塔Bi-FPN相结合形成GVBi-FPN模块以替换CCFM模块,降低模型复杂度的同时提高对小疵点的检测能力;在分类损失部分将RT-DETR的原分类损失函数Varifocal Loss与Slide Loss结合为Slide Varifocal Loss,提高困难样本的训练权重,使算法注重更难检测的目标以提高困难样本的检测精度。结果表明:在检测20类疵点时,相较RT-DETR,FD-DETR算法的参数量有所降低,并且在mAP@0.5方面提高了3.3%,mAP@0.5∶0.95方面提高了1.7%,实现了45.3帧/s的检测速度,能够快速准确的对不同大小疵点进行检测,有效提升算法性能。 展开更多
关键词 织物疵点检测 RT-DETR 加权双向特征金字塔 可变形注意力 损失函数
在线阅读 下载PDF
基于改进YOLOv7-tiny的绝缘子缺陷检测网络
19
作者 韩兴宇 陈为真 《现代电子技术》 北大核心 2025年第16期105-112,共8页
现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特... 现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特征交互(AIFI)来处理高维特征,从而降低计算量;其次,使用双向加权路径特征金字塔网络(BiFPN)进行特征融合,并对下采样模块进行改进,增强网络的感知能力;最后,使用Focal-DIoU损失函数提高锚框质量。结果表明,与基线模型相比,IDD-Net的平均精度均值提高4.1%,精确率和召回率分别提高2.4%和6.5%,参数量和浮点运算量分别减少5.8%和2.3%,对于闪络缺陷的平均精度提高11.2%。由此说明所提方法参数量较小,性能更优异,鲁棒性更强。 展开更多
关键词 YOLOv7-tiny 绝缘子缺陷检测 基于注意力的尺度内特征交互 双向加权路径特征金字塔网络 MC下采样模块 轻量级网络
在线阅读 下载PDF
基于改进YOLOv5的线束连接器目标检测算法
20
作者 胡永鑫 管宝 《现代工业经济和信息化》 2025年第1期103-105,共3页
针对线束连接器自动装配系统的设计需求,提出了一种改进的YOLOv5目标检测算法。通过现场图像采集创建数据集后,对原有模型进行修改:替换C3模块为C2f以提高检测的准确性和鲁棒性,采用Focal-EIOU损失函数来调整难易样本权重并增强对连接... 针对线束连接器自动装配系统的设计需求,提出了一种改进的YOLOv5目标检测算法。通过现场图像采集创建数据集后,对原有模型进行修改:替换C3模块为C2f以提高检测的准确性和鲁棒性,采用Focal-EIOU损失函数来调整难易样本权重并增强对连接器插孔的关注度,引入双向特征金字塔网络来优化多尺度特征融合效率。经过这些改进,模型的检测精度提升至98.0%,相比原模型提升了3.4%,满足了自动装配系统的设计需求。 展开更多
关键词 YOLOv5 线束连接器 Focal-EIOU损失函数 双向特征金字塔网络(bifpn)自动装配
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部