BACKGROUND Propofol has been widely used in bidirectional gastrointestinal endoscopy sedation;however,it frequently leads to cardiovascular adverse events and respiratory depression.Propofol target-controlled infusion...BACKGROUND Propofol has been widely used in bidirectional gastrointestinal endoscopy sedation;however,it frequently leads to cardiovascular adverse events and respiratory depression.Propofol target-controlled infusion(TCI)can provide safe sedation but may require higher dosages of propofol.On the contrary,etomidate offers hemodynamic stability.AIM To evaluate the effect of different dose etomidate added to propofol TCI sedation during same-visit bidirectional endoscopy.METHODS A total of 330 patients from Fujian Provincial Hospital were randomly divided into three groups:P,0.1EP,and 0.15EP.Patients in the P group received propofol TCI only,with an initial effect-site concentration of the propofol TCI system of 3.0 mg/mL.Patients in the 0.1EP and 0.15EP groups received 0.1 and 0.15 mg/kg etomidate intravenous injection,respectively,followed by propofol TCI.RESULTS Patients in the 0.15EP group had higher mean blood pressure after induction than the other groups(P group:78 mmHg,0.1EP group:82 mmHg,0.15EP group:88 mmHg;P<0.05).Total doses of propofol consumption significantly decreased in the 0.15EP group compared with that in the other groups(P group:260.6 mg,0.1EP group:228.1 mg,0.15EP group:201.2 mg;P<0.05).The induction time was longer in the P group than in the other groups(P group:1.9±0.7 minutes,0.1EP group:1.2±0.4 minutes,0.15EP group:1.1±0.3 minutes;P<0.01).The recovery time was shorter in the 0.15EP group than in the other groups(P group:4.8±2.1 minutes,0.1EP group:4.5±1.6 minutes,0.15EP group:3.9±1.4 minutes;P<0.01).The incidence of hypotension(P group:36.4%,0.1EP group:29.1%,0.15EP group:11.8%;P<0.01)and injection pain was lower in the 0.15EP group than in the other groups(P<0.05).Furthermore,the incidence of respiratory depression was lower in the 0.15EP group than in the P group(P<0.05).Additionally,the satisfaction of the patient,endoscopist,and anesthesiologist was higher in the 0.15EP group than in the other groups(P<0.05).CONCLUSION Our findings suggest that 0.15 mg/kg etomidate plus propofol TCI can significantly reduce propofol consumption,which is followed by fewer cardiovascular adverse events and respiratory depression,along with higher patient,endoscopist,and anesthesiologist satisfaction.展开更多
In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conv...In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conventional tempera-ture sensors trade the measurement accuracy with power consumption.In this work,we present a battery-free wireless tempera-ture sensing chip for long-termly monitoring during food production.A calibrated oscillator-based CMOS temperature sensor is proposed instead of the ADC-based power-hungry circuits in conventional works.In addition,the sensor chip can harvest the power transferred by a remote reader to eliminate the use of battery.Meanwhile,the system conducts wireless bidirectional communication between the sensor chip and reader.In this way,the temperature sensor can realize both a high precision and battery-free operation.The temperature sensing chip is fabricated in 55 nm CMOS process,and the reader chip is imple-mented in 65 nm CMOS technology.Experimental results show that the temperature measurement error achieves±1.6℃ from 25 to 50℃,with battery-free readout by a remote reader.展开更多
Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish ...Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.展开更多
Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the informa...Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.展开更多
A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,whic...A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.展开更多
Following the discovery of bone as an endocrine organ with systemic influence,bone-brain interaction has emerged as a research hotspot,unveiling complex bidirectional communication between bone and brain.Studies indic...Following the discovery of bone as an endocrine organ with systemic influence,bone-brain interaction has emerged as a research hotspot,unveiling complex bidirectional communication between bone and brain.Studies indicate that bone and brain can influence each other’s homeostasis via multiple pathways,yet there is a dearth of systematic reviews in this area.This review comprehensively examines interactions across three key areas:the influence of bone-derived factors on brain function,the effects of brain-related diseases or injuries(BRDI)on bone health,and the concept of skeletal interoception.Additionally,the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms,aiming to facilitate bonebrain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases.Notably,the integration of artificial intelligence(AI)in biomaterial design is highlighted,showcasing AI’s role in expediting the formulation of effective and targeted treatment strategies.In conclusion,this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice.These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain,underscoring the potential of interdisciplinary approaches in enhancing human health.展开更多
It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result...It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result with 6 replaced by 30. Xu and Zhang showed that the conjecture is true for 6-edge-connected graphs. And for 4-edge-connected graphs, Raspaud and Zhu proved it is true with 6 replaced by 4. In this paper, we show that Bouchet's conjecture is true with 6 replaced by 15 for 3-edge-connected graphs.展开更多
Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the inter...Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the interaction effect significant?Early works concluded that the effect of interaction is pronounced for stiff systems;consequently,the straightforward method for estimating seismic response to bidirectional excitation by using unidirectional analyses is verified primarily for short period systems.Hence,it is essential to identify the domain of significance for bidirectional interaction before adopting this simple methodology in design.Several parametrically defined systems with elastoplastic and degrading hysteresis models are studied under near-fault motions,assuming strength-independent and strength-dependent stiffness.The force-based and displacement-based analyses,conducted in parallel,reveal that the interaction effect is considerable for stiff systems,especially with degrading characteristics in a relatively low inelasticity range.However,the bidirectional effect may be significant even for highly flexible systems,especially for residual deformation,which in earlier works was shrouded.The range of significance depends on the hysteresis model,system parameters,and response indices.Regression analysis is carried out with the results of the case studies,and the derived regression models may be used for a preliminary assessment of the impact of interaction in advance.展开更多
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines(also known as osteokines). T...In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines(also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles(EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.展开更多
Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malwar...Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malware detection techniques need to be more efficient in detecting new and progressively sophisticated variants of malware.Therefore,the development of more advanced and accurate techniques is necessary for malware detection.This paper introduces a comprehensive Dual-Channel Attention Deep Bidirectional Long Short-Term Memory(DCADBiLSTM)model for malware detection and riskmitigation.The Dual Channel Attention(DCA)mechanism improves themodel’s capability to concentrate on the features that aremost appropriate in the input data,which reduces the false favourable rates.The Bidirectional Long,Short-Term Memory framework helps capture crucial interdependence from past and future circumstances,which is essential for enhancing the model’s understanding of malware behaviour.As soon as malware is detected,the risk mitigation phase is implemented,which evaluates the severity of each threat and helps mitigate threats earlier.The outcomes of the method demonstrate better accuracy of 98.96%,which outperforms traditional models.It indicates the method detects and mitigates several kinds of malware threats,thereby providing a proactive defence mechanism against the emerging challenges in cybersecurity.展开更多
Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint mod...Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint model of multi-intent detection and slot-filling with unidirectional interaction,which improves the overall performance of the model by fusing the intent information in the slot-filling part.On this basis,in order to further improve the overall performance of the model by exploiting the correlation between the two,this paper proposes a joint multi-intent detection and slot-filling model based on a bidirectional interaction structure,which fuses the intent encoding information in the encoding part of slot filling and fuses the slot decoding information in the decoding part of intent detection.Experimental results on two public multi-intent joint training datasets,MixATIS and MixSNIPS,show that the bidirectional interaction structure proposed in this paper can effectively improve the performance of the joint model.In addition,in order to verify the generalization of the bidirectional interaction structure between intent and slot,a joint model for single-intent scenarios is proposed on the basis of the model in this paper.This model also achieves excellent performance on two public single-intent joint training datasets,CAIS and SNIPS.展开更多
This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how f...This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how films,in turn,contribute to the aesthetic enhancement of short-video content.Drawing on Communication Accommodation Theory and Berry’s Acculturation Theory,along with case analyses and industry data,this research demonstrates that algorithms push films toward high-stimulus,fast-paced narrative patterns—characterized by increased shot density and structural fragmentation—to capture and retain viewer attention.Conversely,films counter this influence by supplying narratively deep and artistically refined content that elevates short-video aesthetics and encourages critical audience engagement.This dynamic reflects a process of mutual adaptation rather than one-sided dominance.The study concludes that such interaction signifies a broader restructuring of cultural production logic,facilitating cross-media convergence while simultaneously posing risks to cultural diversity due to the prioritization of high-traffic content.Balancing this relationship will require policy support,algorithmic transparency,and strengthened industry self-regulation to preserve artistic integrity and cultural ecosystem diversity.展开更多
Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development...Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development of highly efficient SACs and a comprehensive understanding of their structure-activity relationships remain enormously challenging.Herein,a novel kind of Fe-based SAC featuring an asymmetric FeN_(5)-TeN_(4) coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity.Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site,elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species,thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox.Consequently,the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance,achieving a high specific capacity of 735 mAh g^(−1) at 5 C,and remarkable cycling stability with a low decay rate of 0.038%per cycle over 1000 cycles at 1 C.This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.展开更多
Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusio...Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusion of a recursive feature elimination(RFE)algorithm and a bidirectional gated recurrent unit(BGRU).Particularly,the RFE algorithm is employed to select features from high-dimensional data to reduce weak correlations between features and remove redundant features in the numerical feature space.Then,a neural network that combines the BGRU and multilayer perceptron(MLP)is adopted to extract deep intrusion behavior features.Finally,a support vector machine(SVM)classifier is used to classify intrusion behaviors.The proposed model is verified by experiments on the NSL-KDD dataset.The results indicate that the proposed model achieves a 90.25%accuracy and a 97.51%detection rate in binary classification and outperforms other machine learning and deep learning models in intrusion classification.The proposed method can provide new insight into network intrusion detection.展开更多
This paper introduces an Improved Bidirectional Jump Point Search(I-BJPS)algorithm to address the challenges of the traditional Jump Point Search(JPS)in mobile robot path planning.These challenges include excessive no...This paper introduces an Improved Bidirectional Jump Point Search(I-BJPS)algorithm to address the challenges of the traditional Jump Point Search(JPS)in mobile robot path planning.These challenges include excessive node expansions,frequent path inflexion points,slower search times,and a high number of jump points in complex environments with large areas and dense obstacles.Firstly,we improve the heuristic functions in both forward and reverse directions to minimize expansion nodes and search time.We also introduce a node optimization strategy to reduce non-essential nodes so that the path length is optimized.Secondly,we employ a second-order Bezier Curve to smooth turning points,making generated paths more suitable for mobile robot motion requirements.Then,we integrate the Dynamic Window Approach(DWA)to improve path planning safety.Finally,the simulation results demonstrate that the I-BJPS algorithm significantly outperforms both the original unidirectional JPS algorithm and the bidirectional JPS algorithm in terms of search time,the number of path inflexion points,and overall path length,the advantages of the I-BJPS algorithm are particularly pronounced in complex environments.Experimental results from real-world scenarios indicate that the proposed algorithm can efficiently and rapidly generate an optimal path that is safe,collision-free,and well-suited to the robot’s locomotion requirements.展开更多
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte...Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.展开更多
To address the limitations of conventional energy systems and optimize the energy conversion pathways and efficiency,a type of“five-in-one”multifunctional phase-change composite with magnetothermal,electrothermal,so...To address the limitations of conventional energy systems and optimize the energy conversion pathways and efficiency,a type of“five-in-one”multifunctional phase-change composite with magnetothermal,electrothermal,solar-thermal,and thermoelectric energy conversion and electromagnetic shielding functions is developed for multipurpose applications.Such a novel phase-change composite is fabricated by an innovative combination of paraffin wax(PW)as a phase-change material and a carbonized polyimide/Kevlar/graphene oxide@ZIF-67 complex aerogel as a supporting material.The carbonized complex aerogel exhibits a unique bidirectional porous structure with high porosity and robust skeleton to support the loading of PW.The reduced graphene oxide and Co NC resulting from high-temperature carbonization are anchored on the aerogel skeleton to generate high thermal conduction and magnetic effect,enhancing the phonon and electron transfer of the aerogel and improving its energy conversion efficiency.The phase-change composite not only exhibits excellent solar-thermal,thermoelectric,electrothermal,and magnetothermal energy conversion performance,but also achieves high electromagnetic interference shielding effectiveness of 66.2 d B in the X-band.The introduction of PW significantly improves the thermal energy-storage capacity during multi-energy conversion.The developed composite exhibits great application potential for efficient solar energy utilization,sustainable power generation,outdoor deicing,human thermal therapy,and electronic device protection.展开更多
The recent article by Jiang et al published in World Journal of Gastroenterology reports substantial bidirectional associations between gallstone disease(GSD),non-alcoholic fatty liver disease(NAFLD),and kidney stone ...The recent article by Jiang et al published in World Journal of Gastroenterology reports substantial bidirectional associations between gallstone disease(GSD),non-alcoholic fatty liver disease(NAFLD),and kidney stone disease(KSD),based on multicenter cross-sectional studies and a systematic review with meta-analysis.While the findings have the potential to significantly impact clinical and pre-ventive strategies,several methodological issues merit closer examination.This letter critiques key aspects of the study,including sample population hetero-geneity,potential confounding variables,and the reliance on cross-sectional data that may limit causal inferences.We also discuss the generalizability of these results to broader populations given the study's focus on the Chinese demogra-phic.By addressing these concerns,we suggest a more nuanced interpretation of the associations between GSD,NAFLD,and KSD,advocating for longitudinal studies to validate these findings and enhance their applicability in global health contexts.展开更多
Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change ma...Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems.展开更多
The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situati...The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality.展开更多
文摘BACKGROUND Propofol has been widely used in bidirectional gastrointestinal endoscopy sedation;however,it frequently leads to cardiovascular adverse events and respiratory depression.Propofol target-controlled infusion(TCI)can provide safe sedation but may require higher dosages of propofol.On the contrary,etomidate offers hemodynamic stability.AIM To evaluate the effect of different dose etomidate added to propofol TCI sedation during same-visit bidirectional endoscopy.METHODS A total of 330 patients from Fujian Provincial Hospital were randomly divided into three groups:P,0.1EP,and 0.15EP.Patients in the P group received propofol TCI only,with an initial effect-site concentration of the propofol TCI system of 3.0 mg/mL.Patients in the 0.1EP and 0.15EP groups received 0.1 and 0.15 mg/kg etomidate intravenous injection,respectively,followed by propofol TCI.RESULTS Patients in the 0.15EP group had higher mean blood pressure after induction than the other groups(P group:78 mmHg,0.1EP group:82 mmHg,0.15EP group:88 mmHg;P<0.05).Total doses of propofol consumption significantly decreased in the 0.15EP group compared with that in the other groups(P group:260.6 mg,0.1EP group:228.1 mg,0.15EP group:201.2 mg;P<0.05).The induction time was longer in the P group than in the other groups(P group:1.9±0.7 minutes,0.1EP group:1.2±0.4 minutes,0.15EP group:1.1±0.3 minutes;P<0.01).The recovery time was shorter in the 0.15EP group than in the other groups(P group:4.8±2.1 minutes,0.1EP group:4.5±1.6 minutes,0.15EP group:3.9±1.4 minutes;P<0.01).The incidence of hypotension(P group:36.4%,0.1EP group:29.1%,0.15EP group:11.8%;P<0.01)and injection pain was lower in the 0.15EP group than in the other groups(P<0.05).Furthermore,the incidence of respiratory depression was lower in the 0.15EP group than in the P group(P<0.05).Additionally,the satisfaction of the patient,endoscopist,and anesthesiologist was higher in the 0.15EP group than in the other groups(P<0.05).CONCLUSION Our findings suggest that 0.15 mg/kg etomidate plus propofol TCI can significantly reduce propofol consumption,which is followed by fewer cardiovascular adverse events and respiratory depression,along with higher patient,endoscopist,and anesthesiologist satisfaction.
基金supported by the National Key R&D Program of China under Grant 2024YFE0203500Xiaomi Young Talents Program。
文摘In the applications such as food production,the environmental temperature should be measured continuously dur-ing the entire process,which requires an ultra-low-power temperature sensor for long-termly monitoring.Conventional tempera-ture sensors trade the measurement accuracy with power consumption.In this work,we present a battery-free wireless tempera-ture sensing chip for long-termly monitoring during food production.A calibrated oscillator-based CMOS temperature sensor is proposed instead of the ADC-based power-hungry circuits in conventional works.In addition,the sensor chip can harvest the power transferred by a remote reader to eliminate the use of battery.Meanwhile,the system conducts wireless bidirectional communication between the sensor chip and reader.In this way,the temperature sensor can realize both a high precision and battery-free operation.The temperature sensing chip is fabricated in 55 nm CMOS process,and the reader chip is imple-mented in 65 nm CMOS technology.Experimental results show that the temperature measurement error achieves±1.6℃ from 25 to 50℃,with battery-free readout by a remote reader.
基金Institute of Technology Research Fund Program for Young Scholars21C Innovation Laboratory Contemporary Amperex Technology Co.,Limited,Ninde, 352100, China (21C–OP-202314)。
文摘Lithium-sulfur (Li-S) batteries have gained great attention due to the high theoretical energy density and low cost,yet their further commercialization has been obstructed by the notorious shuttle effect and sluggish redox dynamics.Herein,we supply a strategy to optimize the electron structure of Ni_(2)P by concurrently introducing B-doped atoms and P vacancies in Ni_(2)P (Vp-B-Ni_(2)P),thereby enhancing the bidirectional sulfur conversion.The study indicates that the simultaneous introduction of B-doped atoms and P vacancies in Ni_(2)P causes the redistribution of electron around Ni atoms,bringing about the upward shift of d-band center of Ni atoms and effective d-p orbital hybridization between Ni atoms and sulfur species,thus strengthening the chemical anchoring for lithium polysulfides (LiPSs) as well as expediting the bidirectional conversion kinetics of sulfur species.Meanwhile,theoretical calculations reveal that the incorporation of B-doped atoms and P vacancies in Ni_(2)P selectively promotes Li2S dissolution and nucleation processes.Thus,the Li-S batteries with Vp-B-Ni_(2)P-separators present outstanding rate ability of 777 m A h g^(-1)at 5 C and high areal capacity of 8.03 mA h cm^(-2)under E/S of 5μL mg^(-1)and sulfur loading of 7.20 mg cm^(-2).This work elucidates that introducing heteroatom and vacancy in metal phosphide collaboratively regulates the electron structure to accelerate bidirectional sulfur conversion.
文摘Non-seismically designed(NSD)beam-column joints are susceptible to joint shear failure under seismic loads.Although significant research is available on the seismic behavior of such joints of planar frames,the information on the seismic behavior of joints of space frames(3D joints)is insufficient.The 3D joints are subjected to bi-directional excitation,which results in an interaction between the shear strength obtained for the joint in the two orthogonal directions separately.The bi-directional seismic behavior of corner reinforced concrete(RC)joints is the focus of this study.First,a detailed finite element(FE)model using the FE software Abaqus,is developed and validated using the test results from the literature.The validated modeling procedure is used to conduct a parametric study to investigate the influence of different parameters such as concrete strength,dimensions of main and transverse beams framing into the joint,presence or absence of a slab,axial load ratio and loading direction on the seismic behavior of joints.By subjecting the models to different combinations of loads on the beams along perpendicular directions,the interaction of the joint shear strength in two orthogonal directions is studied.The comparison of the interaction curves of the joints obtained from the numerical study with a quadratic(circular)interaction curve indicates that in a majority of cases,the quadratic interaction model can represent the strength interaction diagrams of RC beam to column connections with governing joint shear failure reasonably well.
文摘A medical image encryption is proposed based on the Fisher-Yates scrambling,filter diffusion and S-box substitution.First,chaotic sequence associated with the plaintext is generated by logistic-sine-cosine system,which is used for the scrambling,substitution and diffusion processes.The three-dimensional Fisher-Yates scrambling,S-box substitution and diffusion are employed for the first round of encryption.The chaotic sequence is adopted for secondary encryption to scramble the ciphertext obtained in the first round.Then,three-dimensional filter is applied to diffusion for further useful information hiding.The key to the algorithm is generated by the combination of hash value of plaintext image and the input parameters.It improves resisting ability of plaintext attacks.The security analysis shows that the algorithm is effective and efficient.It can resist common attacks.In addition,the good diffusion effect shows that the scheme can solve the differential attacks encountered in the transmission of medical images and has positive implications for future research.
基金financially supported by the Basic Science Center Program(T2288102)the Key Program of the National Natural Science Foundation of China(32230059)+3 种基金the Foundation of Frontiers Science Center for Materiobiology and Dynamic Chemistry(JKVD1211002)the Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(32401128)Postdoctoral Fellowship Program of CPSF(GZC20230793)Shanghai Post-doctoral Excellence Program(2023251).
文摘Following the discovery of bone as an endocrine organ with systemic influence,bone-brain interaction has emerged as a research hotspot,unveiling complex bidirectional communication between bone and brain.Studies indicate that bone and brain can influence each other’s homeostasis via multiple pathways,yet there is a dearth of systematic reviews in this area.This review comprehensively examines interactions across three key areas:the influence of bone-derived factors on brain function,the effects of brain-related diseases or injuries(BRDI)on bone health,and the concept of skeletal interoception.Additionally,the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms,aiming to facilitate bonebrain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases.Notably,the integration of artificial intelligence(AI)in biomaterial design is highlighted,showcasing AI’s role in expediting the formulation of effective and targeted treatment strategies.In conclusion,this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice.These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain,underscoring the potential of interdisciplinary approaches in enhancing human health.
基金Supported by the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China Project(Grant No.10XNB054)
文摘It was conjectured by Bouchet that every bidirected graph which admits a nowhere-zero κ flow will admit a nowhere-zero 6-flow. He proved that the conjecture is true when 6 is replaced by 216. Zyka improved the result with 6 replaced by 30. Xu and Zhang showed that the conjecture is true for 6-edge-connected graphs. And for 4-edge-connected graphs, Raspaud and Zhu proved it is true with 6 replaced by 4. In this paper, we show that Bouchet's conjecture is true with 6 replaced by 15 for 3-edge-connected graphs.
文摘Motivated by the early works on bidirectional interaction and the breakthrough to estimate seismic response to bidirectional shaking via unidirectional analysis,it is essential to answer the question:When is the interaction effect significant?Early works concluded that the effect of interaction is pronounced for stiff systems;consequently,the straightforward method for estimating seismic response to bidirectional excitation by using unidirectional analyses is verified primarily for short period systems.Hence,it is essential to identify the domain of significance for bidirectional interaction before adopting this simple methodology in design.Several parametrically defined systems with elastoplastic and degrading hysteresis models are studied under near-fault motions,assuming strength-independent and strength-dependent stiffness.The force-based and displacement-based analyses,conducted in parallel,reveal that the interaction effect is considerable for stiff systems,especially with degrading characteristics in a relatively low inelasticity range.However,the bidirectional effect may be significant even for highly flexible systems,especially for residual deformation,which in earlier works was shrouded.The range of significance depends on the hysteresis model,system parameters,and response indices.Regression analysis is carried out with the results of the case studies,and the derived regression models may be used for a preliminary assessment of the impact of interaction in advance.
基金supported by the National Natural Science Foundation of China (82230071, 82172098)the Integrated Project of Major Research Plan of National Natural Science Foundation of China (92249303)+2 种基金the Laboratory Animal Research Project of Shanghai Committee of Science and Technology (23141900600)the Shanghai Clinical Research Plan (SHDC2023CRT01)the Young Elite Scientist Sponsorship Program by China Association for Science and Technology (YESS20230049)。
文摘In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines(also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles(EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under grant No.(IPP:421-611-2025).
文摘Over the past few years,Malware attacks have become more and more widespread,posing threats to digital assets throughout the world.Although numerous methods have been developed to detect malicious attacks,these malware detection techniques need to be more efficient in detecting new and progressively sophisticated variants of malware.Therefore,the development of more advanced and accurate techniques is necessary for malware detection.This paper introduces a comprehensive Dual-Channel Attention Deep Bidirectional Long Short-Term Memory(DCADBiLSTM)model for malware detection and riskmitigation.The Dual Channel Attention(DCA)mechanism improves themodel’s capability to concentrate on the features that aremost appropriate in the input data,which reduces the false favourable rates.The Bidirectional Long,Short-Term Memory framework helps capture crucial interdependence from past and future circumstances,which is essential for enhancing the model’s understanding of malware behaviour.As soon as malware is detected,the risk mitigation phase is implemented,which evaluates the severity of each threat and helps mitigate threats earlier.The outcomes of the method demonstrate better accuracy of 98.96%,which outperforms traditional models.It indicates the method detects and mitigates several kinds of malware threats,thereby providing a proactive defence mechanism against the emerging challenges in cybersecurity.
基金Supported by the National Nature Science Foundation of China(62462037,62462036)Project for Academic and Technical Leader in Major Disciplines in Jiangxi Province(20232BCJ22013)+1 种基金Jiangxi Provincial Natural Science Foundation(20242BAB26017,20232BAB202010)Jiangxi Province Graduate Innovation Fund Project(YC2023-S320)。
文摘Intent detection and slot filling are two important components of natural language understanding.Because their relevance,joint training is often performed to improve performance.Existing studies mostly use a joint model of multi-intent detection and slot-filling with unidirectional interaction,which improves the overall performance of the model by fusing the intent information in the slot-filling part.On this basis,in order to further improve the overall performance of the model by exploiting the correlation between the two,this paper proposes a joint multi-intent detection and slot-filling model based on a bidirectional interaction structure,which fuses the intent encoding information in the encoding part of slot filling and fuses the slot decoding information in the decoding part of intent detection.Experimental results on two public multi-intent joint training datasets,MixATIS and MixSNIPS,show that the bidirectional interaction structure proposed in this paper can effectively improve the performance of the joint model.In addition,in order to verify the generalization of the bidirectional interaction structure between intent and slot,a joint model for single-intent scenarios is proposed on the basis of the model in this paper.This model also achieves excellent performance on two public single-intent joint training datasets,CAIS and SNIPS.
文摘This study examines the bidirectional shaping mechanism between short-video algorithms and film narratives within the attention economy.It investigates how algorithmic logic influences cinematic storytelling and how films,in turn,contribute to the aesthetic enhancement of short-video content.Drawing on Communication Accommodation Theory and Berry’s Acculturation Theory,along with case analyses and industry data,this research demonstrates that algorithms push films toward high-stimulus,fast-paced narrative patterns—characterized by increased shot density and structural fragmentation—to capture and retain viewer attention.Conversely,films counter this influence by supplying narratively deep and artistically refined content that elevates short-video aesthetics and encourages critical audience engagement.This dynamic reflects a process of mutual adaptation rather than one-sided dominance.The study concludes that such interaction signifies a broader restructuring of cultural production logic,facilitating cross-media convergence while simultaneously posing risks to cultural diversity due to the prioritization of high-traffic content.Balancing this relationship will require policy support,algorithmic transparency,and strengthened industry self-regulation to preserve artistic integrity and cultural ecosystem diversity.
基金supported by the National Natural Science Foundation(52302284,22002086,22204096)Shanghai Sailing Program(23YF1412200)the Fundamental Research Funds for the Central Universities(22120240314).
文摘Single-atom catalysts(SACs)have garnered significant attention in lithium-sulfur(Li-S)batteries for their potential to mitigate the severe polysulfide shuttle effect and sluggish redox kinetics.However,the development of highly efficient SACs and a comprehensive understanding of their structure-activity relationships remain enormously challenging.Herein,a novel kind of Fe-based SAC featuring an asymmetric FeN_(5)-TeN_(4) coordination structure was precisely designed by introducing Te atom adjacent to the Fe active center to enhance the catalytic activity.Theoretical calculations reveal that the neighboring Te atom modulates the local coordination environment of the central Fe site,elevating the d-band center closer to the Fermi level and strengthening the d-p orbital hybridization between the catalyst and sulfur species,thereby immobilizing polysulfides and improving the bidirectional catalysis of Li-S redox.Consequently,the Fe-Te atom pair catalyst endows Li-S batteries with exceptional rate performance,achieving a high specific capacity of 735 mAh g^(−1) at 5 C,and remarkable cycling stability with a low decay rate of 0.038%per cycle over 1000 cycles at 1 C.This work provides fundamental insights into the electronic structure modulation of SACs and establishes a clear correlation between precisely engineered atomic configurations and their enhanced catalytic performance in Li-S electrochemistry.
基金supported in part by the National Natural Science Foundation of China(No.62001333)the Scientific Research Project of Education Department of Hubei Province(No.D20221702).
文摘Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusion of a recursive feature elimination(RFE)algorithm and a bidirectional gated recurrent unit(BGRU).Particularly,the RFE algorithm is employed to select features from high-dimensional data to reduce weak correlations between features and remove redundant features in the numerical feature space.Then,a neural network that combines the BGRU and multilayer perceptron(MLP)is adopted to extract deep intrusion behavior features.Finally,a support vector machine(SVM)classifier is used to classify intrusion behaviors.The proposed model is verified by experiments on the NSL-KDD dataset.The results indicate that the proposed model achieves a 90.25%accuracy and a 97.51%detection rate in binary classification and outperforms other machine learning and deep learning models in intrusion classification.The proposed method can provide new insight into network intrusion detection.
基金supported by the Xinjiang Uygur Autonomous Region Central Guided Local Science and Technology Development Fund Project(No.ZYYD2025QY17).
文摘This paper introduces an Improved Bidirectional Jump Point Search(I-BJPS)algorithm to address the challenges of the traditional Jump Point Search(JPS)in mobile robot path planning.These challenges include excessive node expansions,frequent path inflexion points,slower search times,and a high number of jump points in complex environments with large areas and dense obstacles.Firstly,we improve the heuristic functions in both forward and reverse directions to minimize expansion nodes and search time.We also introduce a node optimization strategy to reduce non-essential nodes so that the path length is optimized.Secondly,we employ a second-order Bezier Curve to smooth turning points,making generated paths more suitable for mobile robot motion requirements.Then,we integrate the Dynamic Window Approach(DWA)to improve path planning safety.Finally,the simulation results demonstrate that the I-BJPS algorithm significantly outperforms both the original unidirectional JPS algorithm and the bidirectional JPS algorithm in terms of search time,the number of path inflexion points,and overall path length,the advantages of the I-BJPS algorithm are particularly pronounced in complex environments.Experimental results from real-world scenarios indicate that the proposed algorithm can efficiently and rapidly generate an optimal path that is safe,collision-free,and well-suited to the robot’s locomotion requirements.
基金funded by the National Natural Science Foundation of China,grant number 624010funded by the Natural Science Foundation of Anhui Province,grant number 2408085QF202+1 种基金funded by the Anhui Future Technology Research Institute Industry Guidance Fund Project,grant number 2023cyyd04funded by the Project of Research of Anhui Polytechnic University,grant number Xjky2022150.
文摘Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.
基金supported by the Beijing Natural Science Foundation(Grant No.:2242049)。
文摘To address the limitations of conventional energy systems and optimize the energy conversion pathways and efficiency,a type of“five-in-one”multifunctional phase-change composite with magnetothermal,electrothermal,solar-thermal,and thermoelectric energy conversion and electromagnetic shielding functions is developed for multipurpose applications.Such a novel phase-change composite is fabricated by an innovative combination of paraffin wax(PW)as a phase-change material and a carbonized polyimide/Kevlar/graphene oxide@ZIF-67 complex aerogel as a supporting material.The carbonized complex aerogel exhibits a unique bidirectional porous structure with high porosity and robust skeleton to support the loading of PW.The reduced graphene oxide and Co NC resulting from high-temperature carbonization are anchored on the aerogel skeleton to generate high thermal conduction and magnetic effect,enhancing the phonon and electron transfer of the aerogel and improving its energy conversion efficiency.The phase-change composite not only exhibits excellent solar-thermal,thermoelectric,electrothermal,and magnetothermal energy conversion performance,but also achieves high electromagnetic interference shielding effectiveness of 66.2 d B in the X-band.The introduction of PW significantly improves the thermal energy-storage capacity during multi-energy conversion.The developed composite exhibits great application potential for efficient solar energy utilization,sustainable power generation,outdoor deicing,human thermal therapy,and electronic device protection.
基金Supported by The National Natural Science Foundation of China,No.82074508Fujian Provincial Natural Science Foundation,No.2023J011627+2 种基金Fujian Provincial Health and Wellness Science and Technology Plan Project,No.2023CXB003Xiamen City Support for the Development of Traditional Chinese Medicine Special TCM Scientific Research Project,No.XWZY-2023-0603The Seventh Batch of National Famous Old Traditional Chinese Medicine Experts Experience Heritage Construction Program of National Administration of TCM,No.76(2022).
文摘The recent article by Jiang et al published in World Journal of Gastroenterology reports substantial bidirectional associations between gallstone disease(GSD),non-alcoholic fatty liver disease(NAFLD),and kidney stone disease(KSD),based on multicenter cross-sectional studies and a systematic review with meta-analysis.While the findings have the potential to significantly impact clinical and pre-ventive strategies,several methodological issues merit closer examination.This letter critiques key aspects of the study,including sample population hetero-geneity,potential confounding variables,and the reliance on cross-sectional data that may limit causal inferences.We also discuss the generalizability of these results to broader populations given the study's focus on the Chinese demogra-phic.By addressing these concerns,we suggest a more nuanced interpretation of the associations between GSD,NAFLD,and KSD,advocating for longitudinal studies to validate these findings and enhance their applicability in global health contexts.
基金support from the National Natural Science Foundation of China(No.21878218)the Tianjin Research Innovation Project for Postgraduate Students(No.2023KJ262)+2 种基金the State Grid Corporation of China’s Research Program(No.5419-202019385A)the Fundamental Research Funds for the Central Universities(No.92320006)the Tianjin Key Science and Technology Program(No.18ZXSZSF00030)。
文摘Exploiting advanced nanocomposites isochronally integrating outstanding thermal conductivity(TC)and electromagnetic interference shielding effectiveness(EMI SE)can boost the cutting-edge application of phase change materials.Here,we report a tiramisu-like composite(GMP),where the typical“crust-and-cheese”hierarchical structure is replicated by an innovative two-step bidirectional freezing assembly(BFA)and compressive densification.Hierarchical-aligned graphene array(G-GA)with ultralow thermal resistance is fabricated through 1st BFA and graphitization.During the 2nd BFA,the MXene-CNF crosslinking network with hydrogen-bond actions is used for encapsulating polyethylene glycol(PEG)onto the microlayers of the G-GA skeleton.Remarkably,the microlaminated GMP4 achieves a recorded TC of 34.05 W m^(-1) K^(-1),unprecedented EMI SE of 87.4 dB,and preferable enthalpy density of 179.4 J cm^(-3),along with leakage-free function,and eminent thermal durability.Furthermore,the GMP-loaded equipment is demonstrated for efficient microelectronics cooling and sustainable solar energy utilization.This work opens new avenues for multiscale designing multifunctional macro-composites,broadening the application prospects in advanced electronics and solar energy utilization systems.
文摘The increasing fluency of advanced language models,such as GPT-3.5,GPT-4,and the recently introduced DeepSeek,challenges the ability to distinguish between human-authored and AI-generated academic writing.This situation is raising significant concerns regarding the integrity and authenticity of academic work.In light of the above,the current research evaluates the effectiveness of Bidirectional Long Short-TermMemory(BiLSTM)networks enhanced with pre-trained GloVe(Global Vectors for Word Representation)embeddings to detect AIgenerated scientific Abstracts drawn from the AI-GA(Artificial Intelligence Generated Abstracts)dataset.Two core BiLSTM variants were assessed:a single-layer approach and a dual-layer design,each tested under static or adaptive embeddings.The single-layer model achieved nearly 97%accuracy with trainable GloVe,occasionally surpassing the deeper model.Despite these gains,neither configuration fully matched the 98.7%benchmark set by an earlier LSTMWord2Vec pipeline.Some runs were over-fitted when embeddings were fine-tuned,whereas static embeddings offered a slightly lower yet stable accuracy of around 96%.This lingering gap reinforces a key ethical and procedural concern:relying solely on automated tools,such as Turnitin’s AI-detection features,to penalize individuals’risks and unjust outcomes.Misclassifications,whether legitimate work is misread as AI-generated or engineered text,evade detection,demonstrating that these classifiers should not stand as the sole arbiters of authenticity.Amore comprehensive approach is warranted,one which weaves model outputs into a systematic process supported by expert judgment and institutional guidelines designed to protect originality.