Herein,perylenetetracarboxylic acid(PTA)nanosheets with anisotropic charge migration driven by the formed internal electric fields are synthesized through a facile hydrolysis-reassembly process.Strategically,a Z-schem...Herein,perylenetetracarboxylic acid(PTA)nanosheets with anisotropic charge migration driven by the formed internal electric fields are synthesized through a facile hydrolysis-reassembly process.Strategically,a Z-scheme heterojunction with free-flowing interfacial charge transfer and spatially separated redox centers is constructed based on the distinct photogenerated electrons and holes accumulation regions of PTA nanosheets by in-situ introducing BiVO_(4)quantum dots(BQD)and nanosized Au.The optimized BQD/PTA-Au exhibits a ca.6.4-fold and 4.8-fold enhancement in H_(2)O_(2)production rate and apparent quantum yield at 405 nm compared with pristine PTA,respectively.The exceptional activities are attributed to the cascade Z-scheme charge transfer followed the matched charge migration orientation,as well as the Au active sites for accelerating 2e-oxygen reduction pathway induced by superoxide radicals,as unraveled by electron paramagnetic resonance,in-situ irradiated X-ray photoelectron spectroscopy and in-situ diffuse reflectance infrared Fourier transformation spectroscopy.This work provides a strategy to design an efficient Z-scheme system towards solar-driven H_(2)O_(2)production.展开更多
Novel TiO2/BiVO4 microfiber heterojunctions were constructed using cotton as biomorphic templates. The as-synthesized samples were characterized by scanning electron microscope, X-ray diffraction, X-ray photoelectron ...Novel TiO2/BiVO4 microfiber heterojunctions were constructed using cotton as biomorphic templates. The as-synthesized samples were characterized by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectra and photocatalytic experiment. The morphology of the as-synthesized TiO2/BiVO4 composites was consisted of a large quantity of microfiber structures with diameter from 2.5 gm to 5 μm, and the surface of samples became more coarse and compact with the increase of weight ratio of TiO2. The TiO2/BiVO4 samples with proper content (10.00wt%) showed the highest pho- tocatalytic degradation activity for methylene blue (MB) degradation among all the samples under visible light, and 88.58%MB could be degraded within 150 min. The enhancement of photocatalytic activity was mainly attributed to the formation of n-n heterojunction at the contact interface of TiO2 and BiVO4, which not only narrowed the band gap of BiVO4 for extending the absorption range of visible light, but also promoted the transfer of charge carriers across interface. A possible photodegradation mechanism of MB in the presence of TiO2/BiVO4 microfibrous photocatalyst was proposed.展开更多
文摘Herein,perylenetetracarboxylic acid(PTA)nanosheets with anisotropic charge migration driven by the formed internal electric fields are synthesized through a facile hydrolysis-reassembly process.Strategically,a Z-scheme heterojunction with free-flowing interfacial charge transfer and spatially separated redox centers is constructed based on the distinct photogenerated electrons and holes accumulation regions of PTA nanosheets by in-situ introducing BiVO_(4)quantum dots(BQD)and nanosized Au.The optimized BQD/PTA-Au exhibits a ca.6.4-fold and 4.8-fold enhancement in H_(2)O_(2)production rate and apparent quantum yield at 405 nm compared with pristine PTA,respectively.The exceptional activities are attributed to the cascade Z-scheme charge transfer followed the matched charge migration orientation,as well as the Au active sites for accelerating 2e-oxygen reduction pathway induced by superoxide radicals,as unraveled by electron paramagnetic resonance,in-situ irradiated X-ray photoelectron spectroscopy and in-situ diffuse reflectance infrared Fourier transformation spectroscopy.This work provides a strategy to design an efficient Z-scheme system towards solar-driven H_(2)O_(2)production.
基金supported by the National Natural Science Foundation of China(21407059,61308095)Science Development Project of Jilin Province,China(20130522071JH,20130102004JC,20140101160JC)~~
基金This work was supported by Program Funded by Sha.anxi Department (No.2013JK0690), the Scientific Research Provincial Education Fundamental Research Funds of Xianyang Normal University (No. 14XSYK011, No.12XSYK025), Shaanxi Province Natural Science Foundation (No.2015JQ5188).
文摘Novel TiO2/BiVO4 microfiber heterojunctions were constructed using cotton as biomorphic templates. The as-synthesized samples were characterized by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, UV-Vis diffuse reflectance spectra and photocatalytic experiment. The morphology of the as-synthesized TiO2/BiVO4 composites was consisted of a large quantity of microfiber structures with diameter from 2.5 gm to 5 μm, and the surface of samples became more coarse and compact with the increase of weight ratio of TiO2. The TiO2/BiVO4 samples with proper content (10.00wt%) showed the highest pho- tocatalytic degradation activity for methylene blue (MB) degradation among all the samples under visible light, and 88.58%MB could be degraded within 150 min. The enhancement of photocatalytic activity was mainly attributed to the formation of n-n heterojunction at the contact interface of TiO2 and BiVO4, which not only narrowed the band gap of BiVO4 for extending the absorption range of visible light, but also promoted the transfer of charge carriers across interface. A possible photodegradation mechanism of MB in the presence of TiO2/BiVO4 microfibrous photocatalyst was proposed.