Novel Bi2WO6-BiPO4 photocatalysts with heterojunction structure were fabricated through a facile hydrothermal route. The photocatalytic properties of Bi2WO6-BiPO4 composites were evaluated by photocatalytic degradatio...Novel Bi2WO6-BiPO4 photocatalysts with heterojunction structure were fabricated through a facile hydrothermal route. The photocatalytic properties of Bi2WO6-BiPO4 composites were evaluated by photocatalytic degradation of rhodamine B (Rh B) under simulated sunlight irradiation. The results showed that Bi2WO6-BiPO4 photocatalysts displayed much higher photocatalytic performances for Rh B degradation than the single BiPO4 and Bi2WO6. The best photocatalytic activity of Bi2WO6-BiPO4 with nearly 100% Rh B degradation located at molar ratio of 1:1 after 20 min irradiation. The enhanced photo-catalytic performance could be mainly ascribed to the formation of heterojunction interface in Bi2WO6-BiPO4 which facilitated the transfer and separation of photogenerated electron-hole pairs, as well as the strong visible light absorption originating from the sensitization role of Bi2WO6 to BiPO4. It was also found that the photodegradation of Rh B molecules was mainly attributed to the oxidation action of the generated O2^· - radicals and partly to the action of hvb^+ via direct hole oxidation process.展开更多
The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composi...The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composite was fabricated through a low-temperature solution-phase route for the rst time. The XRD, SEM, EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4, Bi2MoO6, and Ag. Ag nanopar-ticles were photodeposited on the surface of Bi2MoO6/BiPO4 nanosheets, which not only increase visible-light absorption via the surface plasmon resonance, but also serve as good electron acceptor for facilitating quick photoexcited electron transfer. The interface between Bi2MoO6 and BiPO4 facilitates the migration of photoinduced electrons from Bi2MoO6 to BiPO4, which is also conductive to reduce the recombination of electron-holes. Thus, the ternary heterostructured Ag-Bi2MoO6/BiPO4 composite showed signi cant photocatalytic activity, higher than pure Bi2MoO6, BiPO4, and Bi2MoO6/BiPO4. Moreover, the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4 heterostructure related to the band positions of the semiconductors was also discussed. In addition, the quenching effects of di erent scavengers revealed that the reactive ·OH and O2·- play a major role in the phenol red decolorization.展开更多
In this work, a two-step electrodeposition method was employed to prepare BiPO4 nanorod/reduced graphene oxide/FTO composite electrodes(BiPO4/r GO/FTO). The BiPO4/r GO/FTO composite electrode showed the higher photoel...In this work, a two-step electrodeposition method was employed to prepare BiPO4 nanorod/reduced graphene oxide/FTO composite electrodes(BiPO4/r GO/FTO). The BiPO4/r GO/FTO composite electrode showed the higher photoelectrocatalytic(PEC) activity for the removal of methyl orange than pure BiPO4, which was 2.8 times higher than that of BiPO4/FTO electrode. The effects of working voltage and BiPO4 deposition time on the degradation efficiency of methyl orange were investigated. The optimum BiPO4 deposition time was 45 min and the optimum working voltage was 1.2 V. The trapping experiments showed that hydroxyl radicals(·OH) and superoxide radicals(·O2-) were the major reactive species in PEC degradation process. The BiPO4/r GO/FTO composite electrode showed the high stability and its methyl orange removal efficiency remained unchanged after four testing cycles. The reasons for the enhanced PEC efficiency of the BiPO4/r GO/FTO composite electrode was ascribed to the broad visible-light absorption range, the rapid transmission of photogenerated charges, and the mixed BiPO4 phase by the introduction of r GO in the composite electrode films.展开更多
Geometric and electronic structures of three polymorphs of BiPO4(m MBIP, n MBIP and HBIP) have been investigated by the first-principles calculations. The results show that PO4 tetrahedron in n MBIP is distorted mos...Geometric and electronic structures of three polymorphs of BiPO4(m MBIP, n MBIP and HBIP) have been investigated by the first-principles calculations. The results show that PO4 tetrahedron in n MBIP is distorted most, and m MBIP possesses minimum effective mass of carriers in three polymorphs of BiPO4. Further, the leading role of inductive effect of dipole moment or effective mass of carries in the separation of electron-hole pairs is analyzed. Based on the fact that n MBIP has higher photocatalytic activity than m MBIP, it can be inferred that the inductive effect of dipole moment deriving from distorted PO4 tetrahedron is the dominant factor affecting the separation efficiency of carries. The calculated results represent that n MBIP has more appropriate redox potential and narrower band gap than others. These findings may provide meaningful guidance for further understanding on the relationship between unique crystal structure and photocatalytic activity of BiPO4.展开更多
Metal ions like Fe(Ⅲ) were testified to be efficient co-photocatalyst in the field of environmental governance. Hence, a series of BiPO_4/Fe(Ⅲ) materials were prepared via a hydrothermal method and impregnation....Metal ions like Fe(Ⅲ) were testified to be efficient co-photocatalyst in the field of environmental governance. Hence, a series of BiPO_4/Fe(Ⅲ) materials were prepared via a hydrothermal method and impregnation. The experimental results indicated that normal organic dye was effectively removed by BiPO_4 with the presence of Fe(Ⅲ) as a co-photocatalyst. The enhanced removal mechanism was attributed to the easy transfer of photo-induced electron-hole pairs and relatively high productivity of active redical by synergism of Fe(Ⅲ).展开更多
基金This work was supported by the National Natural Science Foundation of China (No.21407059) and the Science Development Project of Jilin Province (No.20130522071JH and No.20140101160JC).
文摘Novel Bi2WO6-BiPO4 photocatalysts with heterojunction structure were fabricated through a facile hydrothermal route. The photocatalytic properties of Bi2WO6-BiPO4 composites were evaluated by photocatalytic degradation of rhodamine B (Rh B) under simulated sunlight irradiation. The results showed that Bi2WO6-BiPO4 photocatalysts displayed much higher photocatalytic performances for Rh B degradation than the single BiPO4 and Bi2WO6. The best photocatalytic activity of Bi2WO6-BiPO4 with nearly 100% Rh B degradation located at molar ratio of 1:1 after 20 min irradiation. The enhanced photo-catalytic performance could be mainly ascribed to the formation of heterojunction interface in Bi2WO6-BiPO4 which facilitated the transfer and separation of photogenerated electron-hole pairs, as well as the strong visible light absorption originating from the sensitization role of Bi2WO6 to BiPO4. It was also found that the photodegradation of Rh B molecules was mainly attributed to the oxidation action of the generated O2^· - radicals and partly to the action of hvb^+ via direct hole oxidation process.
文摘The fabrication of multicomponent composite systems may provide bene ts in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composite was fabricated through a low-temperature solution-phase route for the rst time. The XRD, SEM, EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4, Bi2MoO6, and Ag. Ag nanopar-ticles were photodeposited on the surface of Bi2MoO6/BiPO4 nanosheets, which not only increase visible-light absorption via the surface plasmon resonance, but also serve as good electron acceptor for facilitating quick photoexcited electron transfer. The interface between Bi2MoO6 and BiPO4 facilitates the migration of photoinduced electrons from Bi2MoO6 to BiPO4, which is also conductive to reduce the recombination of electron-holes. Thus, the ternary heterostructured Ag-Bi2MoO6/BiPO4 composite showed signi cant photocatalytic activity, higher than pure Bi2MoO6, BiPO4, and Bi2MoO6/BiPO4. Moreover, the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4 heterostructure related to the band positions of the semiconductors was also discussed. In addition, the quenching effects of di erent scavengers revealed that the reactive ·OH and O2·- play a major role in the phenol red decolorization.
基金partly supported by the National Natural Science Foundations of China(21577132,21978276)the Fundamental Research Funds for the Central Universities(2652018326,2652018298,2652018297)the Beijing Municipal Education Commission Key Science and Technology Project Fund(KZ201910853043)~~
文摘In this work, a two-step electrodeposition method was employed to prepare BiPO4 nanorod/reduced graphene oxide/FTO composite electrodes(BiPO4/r GO/FTO). The BiPO4/r GO/FTO composite electrode showed the higher photoelectrocatalytic(PEC) activity for the removal of methyl orange than pure BiPO4, which was 2.8 times higher than that of BiPO4/FTO electrode. The effects of working voltage and BiPO4 deposition time on the degradation efficiency of methyl orange were investigated. The optimum BiPO4 deposition time was 45 min and the optimum working voltage was 1.2 V. The trapping experiments showed that hydroxyl radicals(·OH) and superoxide radicals(·O2-) were the major reactive species in PEC degradation process. The BiPO4/r GO/FTO composite electrode showed the high stability and its methyl orange removal efficiency remained unchanged after four testing cycles. The reasons for the enhanced PEC efficiency of the BiPO4/r GO/FTO composite electrode was ascribed to the broad visible-light absorption range, the rapid transmission of photogenerated charges, and the mixed BiPO4 phase by the introduction of r GO in the composite electrode films.
基金supported by the National Natural Science Foundation of China(51472081,51102150)the Development Funds of Hubei Collaborative Innovation Center(HBSKFMS2014003,HBSKFMS2014011)+1 种基金the Foundation for High-Level Talents(GCRC13014)the Students Research Fund of Hubei Collaborative Innovation Center(HBSDY201511)
文摘Geometric and electronic structures of three polymorphs of BiPO4(m MBIP, n MBIP and HBIP) have been investigated by the first-principles calculations. The results show that PO4 tetrahedron in n MBIP is distorted most, and m MBIP possesses minimum effective mass of carriers in three polymorphs of BiPO4. Further, the leading role of inductive effect of dipole moment or effective mass of carries in the separation of electron-hole pairs is analyzed. Based on the fact that n MBIP has higher photocatalytic activity than m MBIP, it can be inferred that the inductive effect of dipole moment deriving from distorted PO4 tetrahedron is the dominant factor affecting the separation efficiency of carries. The calculated results represent that n MBIP has more appropriate redox potential and narrower band gap than others. These findings may provide meaningful guidance for further understanding on the relationship between unique crystal structure and photocatalytic activity of BiPO4.
基金the National Natural Science Foundation of China(21507155 and 41201255)the Natural Science Foundation of Hubei Province of China(No.2014CFB807)
文摘Metal ions like Fe(Ⅲ) were testified to be efficient co-photocatalyst in the field of environmental governance. Hence, a series of BiPO_4/Fe(Ⅲ) materials were prepared via a hydrothermal method and impregnation. The experimental results indicated that normal organic dye was effectively removed by BiPO_4 with the presence of Fe(Ⅲ) as a co-photocatalyst. The enhanced removal mechanism was attributed to the easy transfer of photo-induced electron-hole pairs and relatively high productivity of active redical by synergism of Fe(Ⅲ).