随着光伏发电在全球能源体系中占比不断提升,超短期光伏发电量预测对电力系统调度与安全运行至关重要。然而,光伏发电量受多因素影响,具有显著随机性与波动性。为此,提出了一种基于TCN-BiLSTM-Attention模型的超短期光伏发电量预测方法...随着光伏发电在全球能源体系中占比不断提升,超短期光伏发电量预测对电力系统调度与安全运行至关重要。然而,光伏发电量受多因素影响,具有显著随机性与波动性。为此,提出了一种基于TCN-BiLSTM-Attention模型的超短期光伏发电量预测方法。首先通过皮尔逊相关分析筛选关键特征,并利用孤立森林算法检测异常值,结合线性插值法和标准化完成数据预处理。随后,通过时间卷积网络(Temporal Convolutional Network,TCN)提取时序特征,再利用双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)网络捕获前后向时间依赖关系,并在输出端引入注意力机制聚焦关键时间步特征。最后,在Desert Knowledge Australia Solar Centre(DKASC)数据集上的对比实验表明,与传统LSTM、BiLSTM模型相比,提出的TCN-BiLSTM-Attention模型在预测精度、稳定性等方面均表现出一定优势。展开更多
股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-te...股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-term memory,BERT-BiLSTM)对在线财经新闻提取情感特征,构建了融合情感特征和股票交易特征的股指预测模型。实验对比了融合情感特征前后模型的预测能力,并探讨了不同模型、不同时间周期下预测能力的差异。实验结果表明,融合词典法和深度学习技术提取的情感特征均能提升各模型股指预测的准确率。LSTM模型相较其他实验模型在融合情感特征前后的股指预测上均表现较好。进一步的时间跨度分析表明,股指预测模型在较短的时间跨度上对股票指数涨跌的预测能力更强。为验证股指预测模型的实际价值,对沪深300指数的牛熊市和震荡市进行回测分析,结合LSTM模型和深度Q网络(deep Q-network,DQN)原理,对比了传统均线策略以及结合DQN强化学习算法后股指回测差异。回测结果表明,相比于单一的传统交易策略,结合传统交易策略和深度学习方法的股票指数预测模型在牛熊市及震荡市中均保证了正的夏普比例和累积收益率,并有效控制了最大回撤,显示出更强的市场适应性和盈利能力。展开更多
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor...当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。展开更多
文摘随着光伏发电在全球能源体系中占比不断提升,超短期光伏发电量预测对电力系统调度与安全运行至关重要。然而,光伏发电量受多因素影响,具有显著随机性与波动性。为此,提出了一种基于TCN-BiLSTM-Attention模型的超短期光伏发电量预测方法。首先通过皮尔逊相关分析筛选关键特征,并利用孤立森林算法检测异常值,结合线性插值法和标准化完成数据预处理。随后,通过时间卷积网络(Temporal Convolutional Network,TCN)提取时序特征,再利用双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)网络捕获前后向时间依赖关系,并在输出端引入注意力机制聚焦关键时间步特征。最后,在Desert Knowledge Australia Solar Centre(DKASC)数据集上的对比实验表明,与传统LSTM、BiLSTM模型相比,提出的TCN-BiLSTM-Attention模型在预测精度、稳定性等方面均表现出一定优势。
文摘股票市场的不确定性和复杂性使得股票预测成为一项具有挑战性的任务。鉴于金融文本在股票预测中的潜在价值,采用词典法和BERT双向长短期记忆模型(bidirectional encoder representations from transformers-bidirectional long short-term memory,BERT-BiLSTM)对在线财经新闻提取情感特征,构建了融合情感特征和股票交易特征的股指预测模型。实验对比了融合情感特征前后模型的预测能力,并探讨了不同模型、不同时间周期下预测能力的差异。实验结果表明,融合词典法和深度学习技术提取的情感特征均能提升各模型股指预测的准确率。LSTM模型相较其他实验模型在融合情感特征前后的股指预测上均表现较好。进一步的时间跨度分析表明,股指预测模型在较短的时间跨度上对股票指数涨跌的预测能力更强。为验证股指预测模型的实际价值,对沪深300指数的牛熊市和震荡市进行回测分析,结合LSTM模型和深度Q网络(deep Q-network,DQN)原理,对比了传统均线策略以及结合DQN强化学习算法后股指回测差异。回测结果表明,相比于单一的传统交易策略,结合传统交易策略和深度学习方法的股票指数预测模型在牛熊市及震荡市中均保证了正的夏普比例和累积收益率,并有效控制了最大回撤,显示出更强的市场适应性和盈利能力。