期刊文献+
共找到106篇文章
< 1 2 6 >
每页显示 20 50 100
基于BiGRU网络的空间非合作目标受控运动意图识别
1
作者 黄贺祥 杨震 +1 位作者 李嘉胜 罗亚中 《国防科技大学学报》 北大核心 2025年第4期33-41,共9页
针对非合作目标受控运动意图难以识别的问题,提出了一种基于双向门控循环单元(bi-directional gated recurrent unit,BiGRU)网络的意图识别方法。设定非合作目标具有“受控圆形绕飞”“受控水滴绕飞”“定点振荡”“直线逼近”“跳跃逼... 针对非合作目标受控运动意图难以识别的问题,提出了一种基于双向门控循环单元(bi-directional gated recurrent unit,BiGRU)网络的意图识别方法。设定非合作目标具有“受控圆形绕飞”“受控水滴绕飞”“定点振荡”“直线逼近”“跳跃逼近”5种受控运动意图,建立非合作目标受控运动意图机动信息数据集。基于非合作目标进入我方航天器观测范围后的机动时序信息,采用BiGRU网络进行训练,以学习时序数据与受控运动意图之间的潜在关联,实现对非合作目标的意图识别。仿真结果表明,基于BiGRU网络的非合作目标受控运动意图识别方法的检测准确率达到98.35%。该方法可以提高对非合作目标的意图识别能力,为我方在轨航天器的安全保障提供技术参考。 展开更多
关键词 空间态势感知 非合作目标 意图识别 bigru网络
在线阅读 下载PDF
基于改进白鲸算法优化BiTCN-BiGRU的锂电池SOC估计
2
作者 柳博 吴松荣 +2 位作者 付聪 王少惟 张驰 《电子测量技术》 北大核心 2025年第9期75-83,共9页
电池荷电状态(SOC)是电动汽车锂电池管理的核心参数之一,本文提出一种基于改进白鲸算法优化BiTCN-BiGRU的锂电池SOC估计模型。首先搭建双向时域卷积网络(BiTCN)和双向门循环单元(BiGRU)组合的SOC估计模型,然后使用白鲸算法(BWO)对BiTCN-... 电池荷电状态(SOC)是电动汽车锂电池管理的核心参数之一,本文提出一种基于改进白鲸算法优化BiTCN-BiGRU的锂电池SOC估计模型。首先搭建双向时域卷积网络(BiTCN)和双向门循环单元(BiGRU)组合的SOC估计模型,然后使用白鲸算法(BWO)对BiTCN-BiGRU模型超参数寻优以充分发挥组合网络模型的优势,并且分别在传统BWO的探索阶段和鲸落阶段引入改进策略以解决传统BWO容易陷入局部最优且收敛速度慢的问题。最后基于开源锂电池充放电数据集验证改进后SOC估计模型的性能,结果表明在3种温度的标准化城市循环工况下,改进白鲸算法优化BiTCN-BiGRU模型的SOC估计平均绝对误差为0.428%,均方根误差为0.38%,能很好的应用于锂电池SOC估计。 展开更多
关键词 锂电池 SOC估计 BiTCN网络 bigru网络 白鲸优化算法
原文传递
基于BiGRU-MA网络的空战战术意图识别模型
3
作者 孙曜 张佳丽 +2 位作者 王伟 景腾雨 黄震宇 《空天预警研究学报》 2025年第5期369-374,共6页
针对空战战术意图识别中动作组合复杂、意图伪装导致识别难的问题,提出基于双向门控循环单元(BiGRU)与多头自注意力机制(MA)网络的细粒度意图识别方法.针对空战状态将战术意图定义为观察、进攻和防御,通过分析每个离散时间步长的飞机状... 针对空战战术意图识别中动作组合复杂、意图伪装导致识别难的问题,提出基于双向门控循环单元(BiGRU)与多头自注意力机制(MA)网络的细粒度意图识别方法.针对空战状态将战术意图定义为观察、进攻和防御,通过分析每个离散时间步长的飞机状态信息来判断意图;基于专家经验构建三阶及十一阶意图识别规则,对飞行轨迹数据标注意图;采用BiGRU-MA网络提取时序特征,挖掘不同特征维度间的关联.实验结果表明,与其他模型相比,BiGRU-MA模型更能兼顾计算效率和分类精度. 展开更多
关键词 战术意图识别 多头自注意力机制 bigru-MA网络
在线阅读 下载PDF
基于BiGRU-CapsNet与Transformer的双分支短期降雨预测模型
4
作者 刘瑞 叶成绪 刘冰 《计算机与数字工程》 2025年第7期1862-1867,共6页
近年来各种降雨导致的自然灾害频繁发生,给人们的日常生活带来较大影响,及时准确的短期降雨预测可以提醒人们做好预防措施,然而影响短期降雨的天气因素多且变化快,难以对其进行准确预测。对此提出一种基于BiGRUCapsNet与Transformer的... 近年来各种降雨导致的自然灾害频繁发生,给人们的日常生活带来较大影响,及时准确的短期降雨预测可以提醒人们做好预防措施,然而影响短期降雨的天气因素多且变化快,难以对其进行准确预测。对此提出一种基于BiGRUCapsNet与Transformer的双分支短期降雨预测模型,将预处理好的数据分别输入BiGRU-CapsNet与Transformer进行特征提取,然后将提取的特征融合后输入到全连接层进行短期降雨预测。实验结果表明,所提模型在准确率、精准率、F1分数等评价指标均取得较好的结果,能够对短期降雨进行较准确预测。 展开更多
关键词 深度学习 bigru Capsule network TRANSFORMER 短期降雨预测
在线阅读 下载PDF
基于多头注意力机制的TCN-BiGRU密度测井曲线重构方法 被引量:2
5
作者 王欢欢 赵彬 +3 位作者 刘建新 陶良清 高楚桥 廖文龙 《地球物理学进展》 北大核心 2025年第2期592-604,共13页
在测井过程中,受仪器故障、井壁坍塌等因素的影响,部分井段密度曲线常常出现失真或缺失,导致储层评价存在误差.为了提高储层评价的准确性,重构密度曲线显得尤为重要.鉴于传统的机器学习曲线重构方法难以满足精度要求,本文提出了一种融... 在测井过程中,受仪器故障、井壁坍塌等因素的影响,部分井段密度曲线常常出现失真或缺失,导致储层评价存在误差.为了提高储层评价的准确性,重构密度曲线显得尤为重要.鉴于传统的机器学习曲线重构方法难以满足精度要求,本文提出了一种融合时间卷积网络(TCN)、双向门控循环单元(BiGRU)和多头注意力机制(MHA)的密度曲线重构方法.该方法通过TCN的卷积特性捕捉测井数据的长期依赖关系,同时引入多头注意力机制增强BiGRU对重要特征的选择能力,实现精准的密度曲线重构.将该方法应用于研究区实测数据进行重构实验,首先验证了加入地层岩性指标对模型重构能力的影响,然后对比分析了本文网络与Gardner公式、多元拟合、门控循环单元、双向门控循环单元的重构结果,最后通过岩心标定验证本文网络的泛化性.结果表明,本文提出的密度曲线重构方法具有更高的精度,并表现出良好的泛化性. 展开更多
关键词 密度测井曲线重构 多头注意力机制 时间卷积网络 双向门控循环单元 物理约束
原文传递
基于注意力机制的CNN-BiGRU超短期省间现货购电需求预测
6
作者 杨世海 薛冰 +1 位作者 李磊 周瑶 《电力系统及其自动化学报》 北大核心 2025年第9期64-70,共7页
为解决省间现货市场保障电力供应中存在的问题,电力营销单位应对市场中的电力需求进行深入研究,制定科学的购电策略。本文提出一种结合卷积神经网络、双向门控循环单元网络及注意力机制的超短期省间现货购电需求预测模型。首先,通过最... 为解决省间现货市场保障电力供应中存在的问题,电力营销单位应对市场中的电力需求进行深入研究,制定科学的购电策略。本文提出一种结合卷积神经网络、双向门控循环单元网络及注意力机制的超短期省间现货购电需求预测模型。首先,通过最小绝对收缩和选择算子系数法对省间现货购电需求影响因素进行特征筛选;然后,利用卷积神经网络提取省间现货购电需求时间序列的局部特征,同时利用双向门控循环单元捕捉省间现货购电需求时间序列的长期依赖性,并通过注意力机制将序列特征聚焦在重要的时间步上以提高预测精度;最后,采用省间现货购电需求实测数据进行仿真实验。结果表明,该模型在超短期省间现货购电需求预测中具有较高的准确性,并且明显优于单一模型与其他组合预测模型。 展开更多
关键词 电力现货市场 需求预测 双向门控循环单元网络 注意力机制 组合模型
在线阅读 下载PDF
基于BiGRU-CNN的工业企业物流信息管理系统数字化创新研究
7
作者 蒋帅臣 任海艳 +2 位作者 韩京珉 陈棠富 唐煦晶 《电子设计工程》 2025年第20期52-57,共6页
针对工业企业物流信息管理系统中数字化网络异常数据检测准确率不足的问题,研究构建了一个集成检测模块的工业企业物流信息管理系统。该系统采用代价敏感矩阵解决数据不平衡问题,并结合双向门控循环单元、卷积神经网络和注意力机制实现... 针对工业企业物流信息管理系统中数字化网络异常数据检测准确率不足的问题,研究构建了一个集成检测模块的工业企业物流信息管理系统。该系统采用代价敏感矩阵解决数据不平衡问题,并结合双向门控循环单元、卷积神经网络和注意力机制实现了系统核心的异常数据检测功能。通过对比实验结果表明,所构建系统的精确率达到0.899,召回率为0.798,F1得分为0.84。引入代价敏感矩阵后,系统检测灵敏度提升至0.864,平均特异度达到0.972。该系统能够有效降低工业企业物流过程中的安全风险,提升数字化管理水平与运行效率。 展开更多
关键词 bigru 注意力机制 卷积神经网络 数据检测
在线阅读 下载PDF
基于GCN-BiGRU-STMHSA的农业干旱预测研究 被引量:2
8
作者 权家璐 陈雯柏 +2 位作者 王一群 程佳璟 刘亦隆 《智慧农业(中英文)》 2025年第1期156-164,共9页
[目的/意义]农业干旱对中国农业生产发展具有消极影响,甚至威胁到粮食安全。为了降低灾害损失,保障中国的作物产量,根据标准化土壤湿度指数(Standardized Soil Moisture Index, SSMI)对农业干旱进行准确预测和等级分类具有重要意义。[方... [目的/意义]农业干旱对中国农业生产发展具有消极影响,甚至威胁到粮食安全。为了降低灾害损失,保障中国的作物产量,根据标准化土壤湿度指数(Standardized Soil Moisture Index, SSMI)对农业干旱进行准确预测和等级分类具有重要意义。[方法]基于遥感数据,采用深度学习相关模型实现了农业干旱预测。首先,考虑了农业干旱的空间特点,提出了一种结合图神经网络、双向门控循环单元(Bi-Directional Gated Recurrent Unit, BiGRU)和多头自注意力机制的农业干旱预测模型GCN-BiGRU-STMHSA (Graph Convolutional Networks-Bidirectional Gated Recurrent Unit-Spatio-Temporal Multi-Head Self-Attention)。其次,使用日尺度的SSMI作为农业干旱指标。最后,根据搭建的GCN-BiGRU-STMHSA模型实现对SSMI的精准预测和分类。采用全球陆地数据同化系统2.1(Global Land Data Assimilation System-2.1, GLDAS-2.1)为数据集,在该数据集上训练GCN-BiGRU-STMHSA模型,以预测SSMI值并进行农业干旱等级分类。并与经典深度学习模型进行了比较。[结果和讨论]实验结果表明,GCN-BiGRU-STMHSA模型结果优于其他模型。在5个研究地点中,固始县数据集上误差最小,预测10天后的SSMI时,其平均绝对误差(Mean Absolute Error, MAE)为0.053、均方根误差(Root Mean Square Error, RMSE)为0.071、决定系数(Coefficient of Determination, R2)为0.880,准确率(Accuracy, ACC)为0.925,调和平均值(F1)为0.924。预测步长越短,预测的效果越好,当预测步长为28天时,模型预测干旱分类表现依然良好。[结论]该模型在农业干旱预测和分类任务中具有更高的精度和更好的泛化能力。 展开更多
关键词 农业干旱预测 bigru 多头自注意力机制 图神经网络 标准化土壤湿度指数
在线阅读 下载PDF
基于CNN-BIGRU-ATTENTION的高压输电线路故障识别
9
作者 李永峰 高文昊 胡旭晓 《自动化与仪表》 2025年第9期83-88,共6页
高压输电线路故障识别对保证电网安全稳定运行具有重要意义。首先,针对传统单一预测模型预测精度低的问题,结合卷积神经网络(CNN)、双向门控循环单元(BIGRU)以及注意力机制(ATTENTION)在高压输电线路故障识别上的不同优点,提出一种基于C... 高压输电线路故障识别对保证电网安全稳定运行具有重要意义。首先,针对传统单一预测模型预测精度低的问题,结合卷积神经网络(CNN)、双向门控循环单元(BIGRU)以及注意力机制(ATTENTION)在高压输电线路故障识别上的不同优点,提出一种基于CNN-BIGRU-ATTENTION的高压输电线路故障识别模型。利用CNN提取全局特征,对数据进行降维处理;利用BIGRU进一步挖掘特征数据间时序关联;引入注意力机制,对BIGRU输出状态动态分配注意力,捕捉数据中关键信息。其次,针对故障数据特征不明显,采用相模变换技术消除故障暂态行波的相间耦合,得到独立的α、β、γ和0模分量,用独立模分量作为故障识别的主要判别量,尤其是提取出0模分量可以有效判断接地与非接地故障。实验结果表明,该模型故障识别准确率高达99.45%,相较于其它模型,该模型故障识别准确率显著提升,验证了该模型在高压输电线路故障识别中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 输电线路 故障诊断
在线阅读 下载PDF
基于MSECNN-BiGRU-MHA的行星齿轮箱故障诊断方法
10
作者 丘锐基 陈启愉 +2 位作者 李平 邓志文 方晟堃 《机电工程技术》 2025年第15期63-69,102,共8页
在行星齿轮箱故障分类任务中针对多尺度卷积神经网络算法未充分利用时序特征导致故障信息提取不充分及工况自适应能力不足的问题,提出了一种组合故障诊断模型MSECNN-BiGRU-MHA以提升准确率。通过设计多尺度通道注意力模块以充分提取空... 在行星齿轮箱故障分类任务中针对多尺度卷积神经网络算法未充分利用时序特征导致故障信息提取不充分及工况自适应能力不足的问题,提出了一种组合故障诊断模型MSECNN-BiGRU-MHA以提升准确率。通过设计多尺度通道注意力模块以充分提取空间特征信息,结合BiGRU-MHA充分挖掘时间序列数据的远程依赖关系,采用Softmax分类器实现行星齿轮箱故障的空间特征提取及分类。结合东南大学行星齿轮箱故障数据的实验,本方法在0 N·m负载下的诊断准确率达99.7%,相较于CNN、CNN-GRU、CNN-BiGRU、MSECNN-BiGRU四种典型深度学习模型准确率分别高出18.9%、8.5%、7.6%、3.9%,表明模型准确率更高;同时在7.32 N·m负载下的诊断准确率达100%,表明模型具有良好的工况自适应能力。 展开更多
关键词 行星齿轮箱故障诊断 多尺度卷积神经网络 双向门控循环单元(bigru) 多头注意力(MHA)
在线阅读 下载PDF
基于行波特征与KOA-CNN-BiGRU-AM的柔直输电线路故障诊断
11
作者 余波 高学军 +3 位作者 王灿 李瑞灵 徐彦彬 荣梦杰 《电力工程技术》 北大核心 2025年第2期185-196,共12页
针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故... 针对多端柔性直流电网(multi-terminal direct current grid based on modular multilevel converter,MMC-MTDC)故障诊断存在的人工整定阈值过程复杂、高阻故障不易检测的问题,提出一种基于行波特征的诊断方法。首先,通过分析系统的故障特征,得出边界元件对高频信号的阻滞作用;其次,利用经验模态分解(empirical mode decomposition,EMD)对功率进行分解,得到本征模态函数(intrinsic mode function,IMF)分量,将其能量值作为故障特征量训练由卷积神经网络(convolutional neural network,CNN)和双向门控循环单元(bidirectional gated recurrent unit,BiGRU)组成的CNN-BiGRU网络;然后,采用开普勒优化算法(Kepler optimization algorithm,KOA)和注意力机制(attention mechanism,AM)对CNN-BiGRU网络进行改进,实现MMC-MTDC的故障诊断;最后,在PSCAD/EMTDC中搭建仿真模型。结果表明,该方法不仅可以实现母线故障和线路故障的检测,还可以在满足保护可靠性和速动性的前提下,解决高阻故障保护易拒动的问题。 展开更多
关键词 多端柔性直流电网(MMT-MTDC) 故障特性 经验模态分解(EMD) 开普勒优化算法(KOA) 注意力机制(AM) 卷积神经网络(CNN) 双向门控循环单元(bigru) 故障诊断
在线阅读 下载PDF
基于数据优化和CQR-CNN-BiGRU模型的光伏功率超短期区间预测 被引量:1
12
作者 安源 高嘉伟 +1 位作者 罗畅 宋卓洋 《电气应用》 2024年第8期90-99,共10页
现有光伏功率区间预测算法通常侧重于提高覆盖率和缩小预测区间,未能充分考虑实际调度中的经济成本和风险成本,从而限制了这些算法在调度决策方面的实际应用。引入了“最优置信度”概念,提出了一种创新的光伏功率区间预测方法,将数据优... 现有光伏功率区间预测算法通常侧重于提高覆盖率和缩小预测区间,未能充分考虑实际调度中的经济成本和风险成本,从而限制了这些算法在调度决策方面的实际应用。引入了“最优置信度”概念,提出了一种创新的光伏功率区间预测方法,将数据优化与CQR算法以及CNN-BiGRU神经网络模型相结合。首先对经预处理后的光伏功率序列进行优化,采用分解-重构的思想,将光伏功率序列分解为趋势分量、周期分量和随机分量;然后结合多个气象因素,分别输入经改进麻雀搜索算法优化的CQRCNN-BiGRU神经网络中,建立各自的区间预测模型,叠加三个分量的区间预测结果,实现光伏功率的区间预测。仿真结果表明,所提方法的预测区间能够更接近预设的最优置信度,同时能够快速、有效地获得更高质量的预测区间。 展开更多
关键词 光伏功率 超短期区间预测 最优置信度 数据优化 CQR-CNN-bigru神经网络
原文传递
融合1D-CNN与BiGRU的类不平衡流量异常检测 被引量:9
13
作者 陈虹 齐兵 +2 位作者 金海波 武聪 张立昂 《计算机应用》 CSCD 北大核心 2024年第8期2493-2499,共7页
网络流量异常检测是利用各种检测技术分析判断网络流量,发现网络中潜在的攻击,是一种有效的网络安全防护方法。针对高维海量数据和不同攻击类别的网络流量数据不均衡而导致检测准确率低、误报率高的问题,提出一种融合一维卷积神经网络(1... 网络流量异常检测是利用各种检测技术分析判断网络流量,发现网络中潜在的攻击,是一种有效的网络安全防护方法。针对高维海量数据和不同攻击类别的网络流量数据不均衡而导致检测准确率低、误报率高的问题,提出一种融合一维卷积神经网络(1D-CNN)和双向门控循环单元(BiGRU)的类不平衡流量异常检测模型。首先,针对类不平衡数据,通过使用改进的合成少数类过采样技术(SMOTE)即Borderline-SMOTE和基于高斯混合模型(GMM)的欠采样聚类技术进行平衡处理;然后,使用1D-CNN提取数据的局部特征,并利用BiGRU更好地提取数据中的时序特征;最后,在UNSW-NB15数据集对所提模型进行验证,所提模型的准确率为98.12%,误报率为1.28%。结果表明,所提模型提高了对少数攻击的识别率,检测精度高于其他经典机器学习和深度学习模型。 展开更多
关键词 流量异常检测 不平衡处理 特征选择 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于注意力机制的CNN-BIGRU短期电价预测 被引量:15
14
作者 杨超 冉启武 +1 位作者 罗德虎 豆旺 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期22-29,共8页
针对短期电价预测的复杂性和精确度较差的问题,本文提出一种基于注意力机制的卷积神经网络和双向门控循环单元网络的短期电价预测模型。该模型将历史电价数据经过数据预处理后作为输入,首先利用卷积神经网络提取历史电价序列中的特征;其... 针对短期电价预测的复杂性和精确度较差的问题,本文提出一种基于注意力机制的卷积神经网络和双向门控循环单元网络的短期电价预测模型。该模型将历史电价数据经过数据预处理后作为输入,首先利用卷积神经网络提取历史电价序列中的特征;其次,将提取的特征向量构造成时间序列输入到双向门控循环单元网络,充分挖掘特征内部的变化规律进行训练;然后,引入注意力机制来突出重要信息的影响并赋予权重,利用注意力机制对双向门控循环单元网络每个时间步的输出进行加权求和;最后,在全连接层通过激活函数计算输出最终预测值。通过实例验证了本文所提模型的准确性。 展开更多
关键词 电价预测 注意力机制 卷积神经网络 双向门控循环单元网络
在线阅读 下载PDF
基于ResCNN-BiGRU的四川方言语音识别 被引量:4
15
作者 谢金洪 魏霞 《现代电子技术》 北大核心 2024年第1期89-93,共5页
由于基于深度卷积神经网络的语音识别模型中缺乏对特定方言音素特征的提取能力,造成方言发音底层特征部分信息丢失,进而导致方言识别准确率不高、鲁棒性差等问题。针对上述问题,提出一种结合残差网络(RestNet)和双向门控循环网络(BiGRU... 由于基于深度卷积神经网络的语音识别模型中缺乏对特定方言音素特征的提取能力,造成方言发音底层特征部分信息丢失,进而导致方言识别准确率不高、鲁棒性差等问题。针对上述问题,提出一种结合残差网络(RestNet)和双向门控循环网络(BiGRU)的模型,该模型以GFCC特征图为输入,同时在残差网络中设计多尺度卷积模块,通过不同大小的卷积核提取特征,然后使用双向门控循环网络捕捉序列数据中的长期依赖关系,最后采用连接时序分类算法进行标签软对齐,实现四川方言语音识别模型。在四川方言语料库上的实验结果表明,提出的模型识别性能优于现有基准模型。 展开更多
关键词 四川方言 音素特征 双向门控循环网络 多尺度卷积 连接时序分类 标签软对齐
在线阅读 下载PDF
基于DL-BiGRU多特征融合的注塑件尺寸预测方法 被引量:2
16
作者 钱庆杰 余军合 +2 位作者 战洪飞 王瑞 胡健 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第3期646-654,共9页
为了充分挖掘注塑成型过程中模腔内的高频时序特征和注塑成型机状态特征,提出基于双层双向门控循环单元网络(DL-BiGRU)的多特征融合注塑件尺寸预测方法.分析膜腔内传感器高频时序特征与注塑件尺寸间的关联性,采用DL-BiGRU网络从高频数... 为了充分挖掘注塑成型过程中模腔内的高频时序特征和注塑成型机状态特征,提出基于双层双向门控循环单元网络(DL-BiGRU)的多特征融合注塑件尺寸预测方法.分析膜腔内传感器高频时序特征与注塑件尺寸间的关联性,采用DL-BiGRU网络从高频数据中自动提取时序特征,表征注塑件成型过程状态变化特性.通过采样模腔内高频时序数据进行展成平铺,表征注塑成型的瞬时特征.融合时序特征、瞬时特征和成型机状态特征,构建端到端的深度学习多特征融合框架.将上述3种特征融合并联合训练,提升注塑件尺寸预测精度.在注塑成型数据集上进行模型验证,预测尺寸平均均方误差为4.7×10^(-4) mm^(2),最小误差波动为10^(-5) mm^(2)量级,模型具有较高的预测精度和稳定性. 展开更多
关键词 注塑成型 深度学习 双向门控循环单元网络(bigru) 多特征融合 尺寸预测
在线阅读 下载PDF
基于CNN BiGRU RF模型的TBM掘进参数预测研究 被引量:1
17
作者 王海宾 王永涛 +3 位作者 陈黎涵 侯正涛 刘江 丁自伟 《中国煤炭》 北大核心 2024年第9期80-91,共12页
作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神... 作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义。对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神经网络(CNN)优化的双向门控循环单元(BiGRU)神经网络并通过随机森林(RF)进行集成的TBM掘进参数预测模型,实现对TBM掘进参数的预测。研究结果表明:选取与总推力和推进速率关联度最密切的刀盘转速、刀盘扭矩和贯入度作为特征参数;构建的CNN BiGRU RF模型预测掘进参数对总推力和推进速率的拟合优度R 2均值分别为0.950和0.966,均方误差MSE平均值分别为0.750和0.782,均方根误差RMSE平均值分别为0.866和0.885,平均绝对误差MAE平均值分别为1.054和1.007,并且回归评价指标MSE、RMSE、MAE相较于CNN BiGRU模型,分别降低2.497、0.966和0.386,R 2提升23.4%,证明CNN BiGRU RF模型的预测准确度和泛化性最高。该研究可为实际工程掘进参数预测提供指导,有助于推动TBM在煤矿的推广,保障TBM的施工进度。 展开更多
关键词 CNN bigru RF模型 TBM掘进参数 皮尔逊相关系数法 卷积神经网络 双向门控循环单元神经网络 随机森林 时间序列预测
在线阅读 下载PDF
基于ERNIE-BiGRU-Attention-CRF的电子病历命名实体识别方法
18
作者 王正芳 张军亮 +2 位作者 李小倩 于月 陈慧媜 《医学信息学杂志》 CAS 2024年第5期76-82,100,共8页
目的/意义改善中文电子病历命名实体识别模型的性能,更好地开展医疗信息的组织和挖掘。方法/过程构建ERNIE-BiGRU-Attention-CRF中文电子病历命名实体识别模型,首先采用ERNIE1.0预训练模型生成具有语义特征的词向量,然后利用BiGRU捕获... 目的/意义改善中文电子病历命名实体识别模型的性能,更好地开展医疗信息的组织和挖掘。方法/过程构建ERNIE-BiGRU-Attention-CRF中文电子病历命名实体识别模型,首先采用ERNIE1.0预训练模型生成具有语义特征的词向量,然后利用BiGRU捕获全局语义特征与语法结构特征,通过Attention机制进一步增强语义特征的捕获,最后连接CRF解码层输出全局概率最大的标签序列。结果/结论在公开的医疗文本数据集CCKS2017开展对比实验、消融实验,利用生成的模型进行实例分析,取得较好的识别效果。 展开更多
关键词 命名实体识别 ERNIE 双向门控循环神经网络 注意力机制 条件随机场
暂未订购
基于BiGRU和残差图注意力网络的股票价格预测模型 被引量:1
19
作者 徐渺 王雷春 +2 位作者 史含笑 陈敏 刘丹妮 《湖北大学学报(自然科学版)》 CAS 2024年第2期270-281,共12页
高效、准确的股票价格预测能帮助投资者合理规划交易方式,提高投资收益。针对现有股票价格预测模型的准确率不高、投资收益率低等问题,提出一种结合双向门控循环单元(BiGRU)和残差图注意力网络(ResGAT)的股票价格预测模型(BiGRU-ResGAT... 高效、准确的股票价格预测能帮助投资者合理规划交易方式,提高投资收益。针对现有股票价格预测模型的准确率不高、投资收益率低等问题,提出一种结合双向门控循环单元(BiGRU)和残差图注意力网络(ResGAT)的股票价格预测模型(BiGRU-ResGAT)。首先,通过结合注意力机制的时间滑动窗口方法(TSWMCAM)动态计算不同股票之间的关联系数,构建表征股票之间关联关系的股票图结构;然后,使用BiGRU捕获股票在时序上的长距离依赖信息;最后,利用ResGAT对股票的时序特征与股票间的关联特征进行深度挖掘和融合,并对股票价格进行预测。在上海证券交易所主板市场498支股票上的价格预测结果显示,与支持向量机(SVM)、门控循环单元(GRU)、复合模型(CNN-LSTM)和关系股票排序模型(RSR)相比,BiGRU-ResGAT在股票测试集上平均绝对误差(MAE)分别降低79.53%、63.20%、48.17%、33.19%,均方根误差(RMSE)分别降低80.23%、66.22%、53.99%、29.99%,决定系数(R-Squared)分别提升23.34%、15.22%、9.54%、4.84%;在投资组合上的累计收益率分别提升10.77、7.89、6.81、5.03个百分点。实验结果表明,BiGRU-ResGAT能够有效地挖掘和融合股票数据的关键特征,对股票价格进行预测。 展开更多
关键词 股票价格预测 注意力机制 双向门控循环单元 残差图注意力网络 投资组合
在线阅读 下载PDF
基于BiGRU-EWMA的作动系统在线故障预测
20
作者 刘涛 张宏达 +1 位作者 王凯 刘哲旭 《计算机仿真》 2024年第7期26-32,共7页
针对传统故障预测方法在作动系统的部分可观测条件下预测精度较低且在线预测性能较差的问题,提出一种基于BiGRU-EWMA的作动系统在线故障预测方法,首先采用双向门限循环网络(BiGRU)挖掘系统运行数据的双向时序特征,建立作动系统健康状态... 针对传统故障预测方法在作动系统的部分可观测条件下预测精度较低且在线预测性能较差的问题,提出一种基于BiGRU-EWMA的作动系统在线故障预测方法,首先采用双向门限循环网络(BiGRU)挖掘系统运行数据的双向时序特征,建立作动系统健康状态预测模型。然后采用指数加权移动平均(Exponentially Weighted Moving-Average, EWMA)控制图监测状态预测模型的预测值与建模参量实际值之间的输出残差,建立故障趋势的在线监测指标并设定自适应故障阈值。最后在飞机机电系统仿真测试平台上进行实验,并与其它方法进行比较,验证了上述方法能够更早的预测出作动系统出现的故障趋势,且在准确性和快速性上具有较好的优势。 展开更多
关键词 作动系统 在线故障预测 双向门限循环网络 指数加权移动平均控制图
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部