A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high phot...A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange(MO)degradation under visible light.The best sample presented a degradation rate of 0.164 min^-1,which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4,respectively.The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman,X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectra(DRS),electrochemical impedance spectroscopy(EIS)and transient photocurrent response in order to explain the enhanced photoactivity.Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly.Nevertheless,the capability for absorbing visible light was improved measurably,which was beneficial to the MO degradation.On top of that,a strong interaction between g-C3N4 and Bi4O5I2 was detected.This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation.Thus,the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2.Additionally,g-C3N4/Bi4O5I2 also presented high stability.·O2^- and holes were verified to be the main reactive species.展开更多
A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigate...A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.展开更多
基金financially supported by National Undergraduate Training Program for Innovation and Entrepreneurship(Nos.201810345012 and 201810345051)
文摘A graphite carbon nitride(g-C3N4)modified Bi4O5I2 composite was successfully prepared insitu via the thermal treatment of a g-C3N4/Bi OI precursor at 400°C for 3 hr.The as-prepared g-C3N4/Bi4O5I2 showed high photocatalytic performance in Methyl Orange(MO)degradation under visible light.The best sample presented a degradation rate of 0.164 min^-1,which is 3.2 and 82 times as high as that of Bi4O5I2 and g-C3N4,respectively.The g-C3N4/Bi4O5I2 was characterized by X-ray powder diffractometer(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Raman,X-ray photoelectron spectroscopy(XPS),ultraviolet-visible diffuse reflectance spectra(DRS),electrochemical impedance spectroscopy(EIS)and transient photocurrent response in order to explain the enhanced photoactivity.Results indicated that the decoration with a small amount of g-C3N4 influenced the specific surface area only slightly.Nevertheless,the capability for absorbing visible light was improved measurably,which was beneficial to the MO degradation.On top of that,a strong interaction between g-C3N4 and Bi4O5I2 was detected.This interplay promoted the formation of a favorable heterojunction structure and thereby enhanced the charge separation.Thus,the g-C3N4/Bi4O5I2 composite presented greater charge separation efficiency and much better photocatalytic performance than Bi4O5I2.Additionally,g-C3N4/Bi4O5I2 also presented high stability.·O2^- and holes were verified to be the main reactive species.
基金supported by the Scientific Research Project from Hubei Provincial Department of Education(Q20181808)the Research and Innovation Initiatives of Wuhan Polytechnic University(2018J04,2018Y07)~~
文摘A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.