The relative spatial scale relationship of observers and ecosystem and their aesthetic dynamic interaction process are fundamental to evaluation and optimization of aesthetic ecosystem service(AES).A comprehensive and...The relative spatial scale relationship of observers and ecosystem and their aesthetic dynamic interaction process are fundamental to evaluation and optimization of aesthetic ecosystem service(AES).A comprehensive and efficient framework for the assessment of AES is lack in the integration of scale relationship and dynamic process.This study took 9 villages in 4 different developmental stages(traditional,folk,rapidly changed,newly built)in Honghe Hani Rice Terraces,a world heritage site,as the research object.From two scales,viewing from inside and outside,the bi-scale assessing framework was established,which includes the three components of interaction process,connection area(as precondition of interaction),quality(as result of interaction),and influencing factors of quality(elements’characteristics of villages).Among them,the connection areas were evaluated with visual and traffic accessibility along the route.The quality and influencing factors were evaluated through participatory preferences methods by expert group.The influencing factors include 9 characteristics,such as,space size,architecture layout,vegetation species richness,color diversity.The results suggested that villages with high AES quality and low accessibility need to be optimized,and the key influencing factors are space size,architecture layout,color harmony and surrounding sanitation.Therefore,the bi-scale assessing framework can provide important references for decision making and visual protection regulations on the villages.展开更多
针对当前非侵入式负荷技术在低功率、多状态设备的时序负荷上存在分解精度不足、模型泛化性能低的问题,提出一种融合多尺度通道增强注意力机制与改进双向时序卷积网络的负荷分解模型。该模型结合多种卷积与残差网络,克服传统卷积神经网...针对当前非侵入式负荷技术在低功率、多状态设备的时序负荷上存在分解精度不足、模型泛化性能低的问题,提出一种融合多尺度通道增强注意力机制与改进双向时序卷积网络的负荷分解模型。该模型结合多种卷积与残差网络,克服传统卷积神经网络无法捕捉全局信息、难以处理时间序列以及随着网络深度增加带来梯度爆炸的局限性,通过双向结构使模型能从历史数据推断出当前状态,并利用未来短暂波动修正当前状态,从而减少状态转换延迟或瞬时噪声导致的误判。同时,多尺度通道增强注意力机制通过并行多尺度池化,自适应提取不同粒度的时序特征,并结合动态通道交互模块增强关键特征的权重分配。实验结果表明,所提模型在Reference Energy Disaggregation Data(REDD)数据集上对低功率、多状态设备负荷分解误差低,模型泛化能力强。展开更多
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo...针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。展开更多
电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其...电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。展开更多
基金funded by the National Natural Science Foundation of China(grant numbers 41761115,41271203)。
文摘The relative spatial scale relationship of observers and ecosystem and their aesthetic dynamic interaction process are fundamental to evaluation and optimization of aesthetic ecosystem service(AES).A comprehensive and efficient framework for the assessment of AES is lack in the integration of scale relationship and dynamic process.This study took 9 villages in 4 different developmental stages(traditional,folk,rapidly changed,newly built)in Honghe Hani Rice Terraces,a world heritage site,as the research object.From two scales,viewing from inside and outside,the bi-scale assessing framework was established,which includes the three components of interaction process,connection area(as precondition of interaction),quality(as result of interaction),and influencing factors of quality(elements’characteristics of villages).Among them,the connection areas were evaluated with visual and traffic accessibility along the route.The quality and influencing factors were evaluated through participatory preferences methods by expert group.The influencing factors include 9 characteristics,such as,space size,architecture layout,vegetation species richness,color diversity.The results suggested that villages with high AES quality and low accessibility need to be optimized,and the key influencing factors are space size,architecture layout,color harmony and surrounding sanitation.Therefore,the bi-scale assessing framework can provide important references for decision making and visual protection regulations on the villages.
文摘针对当前非侵入式负荷技术在低功率、多状态设备的时序负荷上存在分解精度不足、模型泛化性能低的问题,提出一种融合多尺度通道增强注意力机制与改进双向时序卷积网络的负荷分解模型。该模型结合多种卷积与残差网络,克服传统卷积神经网络无法捕捉全局信息、难以处理时间序列以及随着网络深度增加带来梯度爆炸的局限性,通过双向结构使模型能从历史数据推断出当前状态,并利用未来短暂波动修正当前状态,从而减少状态转换延迟或瞬时噪声导致的误判。同时,多尺度通道增强注意力机制通过并行多尺度池化,自适应提取不同粒度的时序特征,并结合动态通道交互模块增强关键特征的权重分配。实验结果表明,所提模型在Reference Energy Disaggregation Data(REDD)数据集上对低功率、多状态设备负荷分解误差低,模型泛化能力强。
文摘针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。
文摘电-热-气-冷多能联供型微网对实现能源可持续发展具有重要的应用价值。针对多能联供系统碳排放量较高和负荷模型预测不准确问题,提出了一种基于滚动优化的电-热-气-冷系统多时间尺度低碳运行策略。首先,建立电-热-气-冷系统设备模型。其次,构建日前与日内两阶段模型,在日前调度阶段引入含赏罚因数的碳交易机制,通过将卷积神经网络(convolutional neural networks,CNN)与双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)进行结合对风光功率进行预测,并以运行成本最低为目标进行优化。之后,建立日内多时间尺度的优化调度模型,以调度成本最低为目标进行求解。最后,以某市综合能源系统为研究对象进行分析。结果表明,所提出的方法能够有效减少碳排放,提高负荷模型预测的准确度的同时实现多能联供系统的低碳经济运行。