期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
A Length-Adaptive Non-Dominated Sorting Genetic Algorithm for Bi-Objective High-Dimensional Feature Selection 被引量:1
1
作者 Yanlu Gong Junhai Zhou +2 位作者 Quanwang Wu MengChu Zhou Junhao Wen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1834-1844,共11页
As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected featu... As a crucial data preprocessing method in data mining,feature selection(FS)can be regarded as a bi-objective optimization problem that aims to maximize classification accuracy and minimize the number of selected features.Evolutionary computing(EC)is promising for FS owing to its powerful search capability.However,in traditional EC-based methods,feature subsets are represented via a length-fixed individual encoding.It is ineffective for high-dimensional data,because it results in a huge search space and prohibitive training time.This work proposes a length-adaptive non-dominated sorting genetic algorithm(LA-NSGA)with a length-variable individual encoding and a length-adaptive evolution mechanism for bi-objective highdimensional FS.In LA-NSGA,an initialization method based on correlation and redundancy is devised to initialize individuals of diverse lengths,and a Pareto dominance-based length change operator is introduced to guide individuals to explore in promising search space adaptively.Moreover,a dominance-based local search method is employed for further improvement.The experimental results based on 12 high-dimensional gene datasets show that the Pareto front of feature subsets produced by LA-NSGA is superior to those of existing algorithms. 展开更多
关键词 bi-objective optimization feature selection(FS) genetic algorithm high-dimensional data length-adaptive
在线阅读 下载PDF
A Min-Max Strategy to Aid Decision Making in a Bi-Objective Discrete Optimization Problem Using an Improved Ant Colony Algorithm 被引量:1
2
作者 Douglas Yenwon Kparib Stephen Boakye Twum Douglas Kwasi Boah 《American Journal of Operations Research》 2019年第4期161-174,共14页
A multi-objective optimization problem has two or more objectives to be minimized or maximized simultaneously. It is usually difficult to arrive at a solution that optimizes every objective. Therefore, the best way of... A multi-objective optimization problem has two or more objectives to be minimized or maximized simultaneously. It is usually difficult to arrive at a solution that optimizes every objective. Therefore, the best way of dealing with the problem is to obtain a set of good solutions for the decision maker to select the one that best serves his/her interest. In this paper, a ratio min-max strategy is incorporated (after Pareto optimal solutions are obtained) under a weighted sum scalarization of the objectives to aid the process of identifying a best compromise solution. The bi-objective discrete optimization problem which has distance and social cost (in rail construction, say) as the criteria was solved by an improved Ant Colony System algorithm developed by the authors. The model and methodology were applied to hypothetical networks of fourteen nodes and twenty edges, and another with twenty nodes and ninety-seven edges as test cases. Pareto optimal solutions and their maximum margins of error were obtained for the problems to assist in decision making. The proposed model and method is user-friendly and provides the decision maker with information on the quality of each of the Pareto optimal solutions obtained, thus facilitating decision making. 展开更多
关键词 Optimization DISCRETE bi-objective RATIO MIN-MAX Network PARETO OPTIMAL
暂未订购
A Bi-Objective Green Vehicle Routing Problem: A New Hybrid Optimization Algorithm Applied to a Newspaper Distribution
3
作者 Júlio César Ferreira Maria Teresinha Arns Steiner 《Journal of Geographic Information System》 2021年第4期410-433,共24页
The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and ... The purpose of this work is to present a methodology to provide a solution to a Bi-objective Green Vehicle Routing Problem (BGVRP). The methodology, illustrated using a case study (newspaper distribution problem) and literature Instances, was divided into three stages: Stage 1, data treatment;Stage 2, “metaheuristic approaches” (hybrid or non-hybrid), used comparatively, more specifically: NSGA-II (Non-dominated Sorting Genetic Algorithm II), MOPSO (Multi-Objective Particle Swarm Optimization), which were compared with the new approaches proposed by the authors, CWNSGA-II (Clarke and Wright’s Savings with the Non-dominated Sorting Genetic Algorithm II) and CWTSNSGA-II (Clarke and Wright’s Savings, Tabu Search and Non-dominated Sorting Genetic Algorithm II);Stage 3, analysis of the results, with a comparison of the algorithms. An optimization of 19.9% was achieved for Objective Function 1 (OF<sub>1</sub>;minimization of CO<sub>2</sub> emissions) and consequently the same percentage for the minimization of total distance, and 87.5% for Objective Function 2 (OF<sub>2</sub>;minimization of the difference in demand). Metaheuristic approaches hybrid achieved superior results for case study and instances. In this way, the procedure presented here can bring benefits to society as it considers environmental issues and also balancing work between the routes, ensuring savings and satisfaction for the users. 展开更多
关键词 bi-objective Green Vehicle Routing Problem Green Logistics Meta-Heuristic Procedures Case Study Literature Instances
在线阅读 下载PDF
Bi-objective Optimization of Real-time AGC Dispatch in Performance-based Frequency Regulation Market
4
作者 Xiaoshun Zhang Tian Tan +2 位作者 Tao Yu Bo Yang Xiaoming Huang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第6期2360-2370,共11页
This paper illustrates a new bi-objective optimization model of real-time automatic generation control dispatch in a performance-based frequency regulation market.It attempts to simultaneously minimize the total power... This paper illustrates a new bi-objective optimization model of real-time automatic generation control dispatch in a performance-based frequency regulation market.It attempts to simultaneously minimize the total power deviation and the regulation mileage payment via optimally distributing the realtime total generation command to different regulation units.To handle this problem,an efficient non-dominated sorting genetic algorithm II is adopted to rapidly obtain a high-quality Pareto front for real-time AGC dispatch.A dynamic ideal point based decision making technique is designed to select the best compromise solution from the obtained Pareto front according to the minimization of the total regulation variation,which can effectively avoid an excessive regulation variation for each unit.Finally,two testing systems are used to verify the performance of the proposed technique. 展开更多
关键词 AGC dispatch bi-objective optimization dynamic ideal point based decision making performance-based frequency regulation regulation mileage
原文传递
考虑转运的应急物资两阶段优化调度
5
作者 王静 邹静静 汪勇 《计算机技术与发展》 2025年第4期37-44,共8页
供应物资受限下多供应点、多需求点、多种类的应急物资调度需要保障配送高效的同时提升各需求点的满足度。因此,通过建立以运输成本和需求满足度为目标的调度模型,设计进化学习算法(ELA)提升模型的求解效果和精度,给出高效的调度方案,... 供应物资受限下多供应点、多需求点、多种类的应急物资调度需要保障配送高效的同时提升各需求点的满足度。因此,通过建立以运输成本和需求满足度为目标的调度模型,设计进化学习算法(ELA)提升模型的求解效果和精度,给出高效的调度方案,引入转运点进一步降低各需求点的运输成本从而优化调度方案。实验分析表明,第一阶段提出的决策变量映射编码避免产生无效的分配方案加快了求解速度,设计的ELA算法能较大程度地降低运输成本并提高需求满足度,与传统GSA相比,给出的调度方案使得运输成本降低13.6%,需求满足度提高18.4%。第二阶段运用节约法优化后,双目标调度方案中将调度方案的运输成本再降低11.1%。结合实际调度需求,给出的两种方案中双目标调度方案适用于降低运输成本的实际需求,而最大需求满足度方案则对提升需求满足度更有帮助,两种方案为实际调度需求提供了更有价值的参考意义。 展开更多
关键词 物资调度 双目标整数规划 进化学习算法 映射编码 横向转运
在线阅读 下载PDF
云医疗模式下外科手术医生的调度优化
6
作者 王娜 王铭铄 +1 位作者 赵宇鑫 赵旭 《沈阳师范大学学报(自然科学版)》 2025年第1期42-46,共5页
在云医疗模式下,外科手术医生资源能够跨医院共享,而患者需提前预约某家医院以确保医疗服务的有序进行。因此,优化外科手术医生的调度变得尤为关键,通过优化调度算法可以提高医疗资源利用效率。考虑到外科手术医生资源的有限性、手术优... 在云医疗模式下,外科手术医生资源能够跨医院共享,而患者需提前预约某家医院以确保医疗服务的有序进行。因此,优化外科手术医生的调度变得尤为关键,通过优化调度算法可以提高医疗资源利用效率。考虑到外科手术医生资源的有限性、手术优先级、依赖于手术序列的术间准备时间等因素,针对云医疗模式下外科手术医生调度优化问题构建了一个以最小化经济成本和时间成本为优化目标的混合整数规划模型。为求解该模型,引入了经典的非支配排序遗传算法(non-dominated sorting genetic algorithmⅡ,NSGA-Ⅱ)。实验结果表明,NSGA-Ⅱ能够有效解决云医疗模式下外科手术医生的跨医院调度优化问题,并提供兼顾经济成本与时间成本的手术排程方案。 展开更多
关键词 云医疗模式 多医院 外科医生调度 双目标优化 NSGA-Ⅱ
暂未订购
Integrated AutoML-based framework for optimizing shale gas production: A case study of the Fuling shale gas field
7
作者 Tianrui Ye Jin Meng +3 位作者 Yitian Xiao Yaqiu Lu Aiwei Zheng Bang Liang 《Energy Geoscience》 2025年第1期209-221,共13页
This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Auto... This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science. 展开更多
关键词 Machine learning Model interpretation bi-objective optimization Shale gas Key factor analysis Fracturing optimization
在线阅读 下载PDF
基于新型多目标深度强化学习模型求解固定式-移动式-无人机式协同配送的AED选址问题 被引量:1
8
作者 揭慧鑫 刘勇 马良 《计算机应用研究》 北大核心 2025年第5期1370-1377,共8页
当前单一固定式自动体外除颤仪(automated external defibrillator,AED)存在数量不足、覆盖不均的问题,难以同时满足时间、成本方面的需求。为优化AED资源的配置与使用效率,考虑固定式AED、移动式AED、无人机式AED三种方式协同配送,以... 当前单一固定式自动体外除颤仪(automated external defibrillator,AED)存在数量不足、覆盖不均的问题,难以同时满足时间、成本方面的需求。为优化AED资源的配置与使用效率,考虑固定式AED、移动式AED、无人机式AED三种方式协同配送,以成本最小、配送时间最小建立双目标AED选址模型。由于该模型属于NP-hard问题,提出了新型多目标深度强化学习模型(novel multi-objective deep reinforcement learning,NMDRL),并针对多目标特点,设计双向协同图注意力机制以及多重最优策略增加Pareto解的多样性和分布性。在四种规模的算例上进行消融实验以及灵敏度分析,验证了双向协同图注意力网络、多重最优策略、门控循环单元各组件的有效性。在三种规模下的对比实验表明NMDRL算法在HV值、IGD值、支配性指标上优于NSGA-Ⅱ、MOPSO以及其他多目标深度强化学习算法,且模型微调步骤可以有效增强算法的多样性和分布性。最后,以上海市杨浦区为研究对象进行数值实验,并针对无人机AED成本参数进行灵敏度分析,验证了模型及算法的可行性,为AED实际布局提供了有效对策。 展开更多
关键词 深度强化学习 双向协同图注意力 固定式-移动式-无人机式协同 AED选址 双目标优化
在线阅读 下载PDF
考虑集结模式的中欧班列开行方案与运行图联合优化 被引量:1
9
作者 杜剑 秦可萱 +3 位作者 林姗 张然 李洋 杨忠杰 《交通运输系统工程与信息》 北大核心 2025年第3期61-72,共12页
中欧班列大多开行“点对点”直达列车,这需要较长集结时间来满足编组数量,导致运输时效性大幅下降。对此,本文将直达模式与集结模式引入中欧班列,并开展开行方案与运行图联合优化研究。针对运输成本低与运输时间短的双目标优化,借助于... 中欧班列大多开行“点对点”直达列车,这需要较长集结时间来满足编组数量,导致运输时效性大幅下降。对此,本文将直达模式与集结模式引入中欧班列,并开展开行方案与运行图联合优化研究。针对运输成本低与运输时间短的双目标优化,借助于ε约束法来寻求双重目标的帕累托前沿,并设计嵌入CPLEX的启发式算法框架。以中欧班列西通道上7个车站和20票货物为背景,对本文模型的可行性与有效性进行验证。结果表明:降低中欧班列的运输成本需要以牺牲运输时间为代价,开行直达与集结班列分别有助于降低成本和缩短时间。“集结+直达”模式相比全直达模式,虽然增加了9.6%运输成本,但却缩短了20.3%的运输时间。相比于运行图联合优化,开行方案单独优化的结果无法满足列车接续以及运输时限约束。 展开更多
关键词 铁路运输 集结模式 联合优化 中欧班列 双目标优化
在线阅读 下载PDF
城市飞行汽车停机坪选址问题研究一:基于双层规划的多目标优化方法
10
作者 沈燕 卢恺 +1 位作者 尹浩东 孙会君 《交通运输工程与信息学报》 2025年第3期74-87,共14页
【背景】飞行汽车作为未来交通领域的颠覆性创新技术,在解决城市交通问题等方面发挥重要作用。然而停机坪等基础设施的规划建设作为飞行汽车安全高效运行的前提,存在布局欠缺合理、进展相对滞后等问题,难以满足多元化低空运行服务需求... 【背景】飞行汽车作为未来交通领域的颠覆性创新技术,在解决城市交通问题等方面发挥重要作用。然而停机坪等基础设施的规划建设作为飞行汽车安全高效运行的前提,存在布局欠缺合理、进展相对滞后等问题,难以满足多元化低空运行服务需求。【目标】通过优化停机坪的选址布局,减少飞行汽车运营成本及地面潜在客伤风险,同时提升乘客出行效率,以期在运营成本、运行风险及乘客服务等多方面取得平衡。【方法】本文建立了基于双层规划的城市飞行汽车停机坪选址多目标优化方法,其中上层以飞行汽车运营成本最小化及潜在客伤风险最小化为目标建立了0-1整数规划模型,下层则考虑乘客出行路径选择行为的多样性,建立了考虑无人小巴与飞行汽车融合的多模式网络系统最优配流模型。进而,设计了融合改进自适应禁忌搜索与Frank-Wolfe的求解算法。【数据】利用公开的Sioux Falls网络及OD需求数据,并考虑停机坪数量及不同目标权重比构建算例。【结果】数值实验结果表明,本文提出的方法能够确定最优的停机坪数量,并显著降低运营风险及成本,选址方案也更为合理。 展开更多
关键词 城市交通 停机坪选址 双层规划 飞行汽车 多目标优化
在线阅读 下载PDF
基于双层多目标决策的规模风电并网系统连锁故障路径预测 被引量:1
11
作者 吴宇航 刘翔宇 +1 位作者 王涛 顾雪平 《电测与仪表》 北大核心 2025年第4期148-156,共9页
风电出力的不确定性增大了电网连锁故障路径预测的难度,因此基于双层多目标决策提出一种适用于规模风电并网系统的连锁故障路径预测方法。所提方法利用概率潮流模型刻画了风电出力波动和负荷波动等不确定性因素,并将其作为连锁故障路径... 风电出力的不确定性增大了电网连锁故障路径预测的难度,因此基于双层多目标决策提出一种适用于规模风电并网系统的连锁故障路径预测方法。所提方法利用概率潮流模型刻画了风电出力波动和负荷波动等不确定性因素,并将其作为连锁故障路径预测的计算基础。提出一种双层多目标决策模型确定后继故障,模型将故障概率和故障后果分别作为上、下层决策目标,根据后继故障的帕累托最优解确定符合条件的连锁故障路径集。以IEEE 39节点系统为例对所提方法进行验证,结果表明:基于双层多目标决策的预测方法能同时预测出发生概率较高和故障后果较为严重的两类连锁故障路径,有利于指导规模风电并网系统的连锁故障防控工作。 展开更多
关键词 规模风电 连锁故障预测 概率潮流 双层多目标决策
在线阅读 下载PDF
应对潮汐客流的城市轨道交通列车跳站运行优化
12
作者 梁辉 景云 +2 位作者 田志强 宋琦 朱卯午 《中国管理科学》 北大核心 2025年第3期256-263,共8页
由于城市轨道交通潮汐客流在时间和空间的分布不均,造成大客流方向乘客滞留严重和小客流方向列车能力冗余等问题。本文从交通需求的角度出发,分别以滞站人数最小和乘客在车时间最短为优化目标,构建考虑跳站策略的城市轨道交通时刻表优... 由于城市轨道交通潮汐客流在时间和空间的分布不均,造成大客流方向乘客滞留严重和小客流方向列车能力冗余等问题。本文从交通需求的角度出发,分别以滞站人数最小和乘客在车时间最短为优化目标,构建考虑跳站策略的城市轨道交通时刻表优化模型,并采用模拟退火算法进行求解。为验证模型和算法的有效性,以某城市轨道交通线路实际运营数据为背景,结果表明:通过运用调整列车发车间隔和列车跳站的协同优化策略,滞站乘客总人数减少7.1%,总的乘客在车时间减少2.2%。最后,针对跳站次数进行灵敏度分析,可为运营方提供了多种选择策略。 展开更多
关键词 城市轨道交通 潮汐客流 双目标优化 列车时刻表 跳站模式
原文传递
分时期教学优化算法求解双目标分布式异构混合流水车间调度问题
13
作者 胡亚辉 朱茗杨 +1 位作者 周艳平 胡乃平 《制造技术与机床》 北大核心 2025年第9期161-168,共8页
针对具有序列相关准备时间约束的双目标分布式异构混合流水车间问题,提出一种多种策略混合的分时期教学优化算法。首先,基于NEH(Nawaz-Enscore-HamHeuristic)算法,设计三方向初始化策略以提高初始解质量;其次,在进化过程中根据迭代次数... 针对具有序列相关准备时间约束的双目标分布式异构混合流水车间问题,提出一种多种策略混合的分时期教学优化算法。首先,基于NEH(Nawaz-Enscore-HamHeuristic)算法,设计三方向初始化策略以提高初始解质量;其次,在进化过程中根据迭代次数划分为两个时期,前期侧重解的多样性,后期加快解的收敛,在前后期的相应阶段采用不同的优化策略,包括破坏与重构、关键交叉搜索、差分突变和邻域搜索策略等;最后,设计了淘汰策略以保证种群整体的收敛性。通过不同规模下与其他算法的对比试验,验证了该算法无论是在收敛性和多样性上均具有较大的优势。 展开更多
关键词 分布式异构混合流水车间 双目标 分时期优化 教学优化算法 多策略混合
在线阅读 下载PDF
THE EFFECT OF WORKER LEARNING ON SCHEDULING JOBS IN A HYBRID FLOW SHOP: A BI-OBJECTIVE APPROACH 被引量:5
14
作者 Farzad Pargar Mostafa Zandieh +1 位作者 Osmo Kauppila Jaakko Kujala 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2018年第3期265-291,共27页
This paper studies learning effect as a resource utilization technique that can model improvement in worker's ability as a result of repeating similar tasks. By considering learning of workers while performing setup ... This paper studies learning effect as a resource utilization technique that can model improvement in worker's ability as a result of repeating similar tasks. By considering learning of workers while performing setup times, a schedule can be determined to place jobs that share similar tools and fixtures next to each other. The purpose of this paper is to schedule a set of jobs in a hybrid flow shop (HFS) environment with learning effect while minimizing two objectives that are in conflict: namely maximum completion time (makespan) and total tardiness. Minimizing makespan is desirable from an internal efficiency viewpoint, but may result in individual jobs being scheduled past their due date, causing customer dissatisfaction and penalty costs. A bi-objective mixed integer programming model is developed, and the complexity of the developed bi-objective model is compared against the bi-criteria one through numerical examples. The effect of worker learning on the structure of assigned jobs to machines and their sequences is analyzed. Two solution methods based on the hybrid water flow like algorithm and non-dominated sorting and ranking concepts are proposed to solve the problem. The quality of the approximated sets of Pareto solutions is evaluated using several performance criteria. The results show that the proposed algorithms with learning effect perform well in reducing setup times and eliminate the need for setups itself through proper scheduling. 展开更多
关键词 bi-objective scheduling hybrid flow shop learning effect META-HEURISTIC
原文传递
Consensus Clustering for Bi-objective Power Network Partition 被引量:5
15
作者 Yi Wang Luzian Lebovitz +1 位作者 Kedi Zheng Yao Zhou 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第4期973-982,共10页
Partitioning a complex power network into a number of sub-zones can help realize a divide-and-conquer’management structure for the whole system,such as voltage and reactive power control,coherency identification,powe... Partitioning a complex power network into a number of sub-zones can help realize a divide-and-conquer’management structure for the whole system,such as voltage and reactive power control,coherency identification,power system restoration,etc.Extensive partitioning methods have been proposed by defining various distances,applying different clustering methods,or formulating varying optimization models for one specific objective.However,a power network partition may serve two or more objectives,where a trade-off among these objectives is required.This paper proposes a novel weighted consensus clustering-based approach for bi-objective power network partition.By varying the weights of different partitions for different objectives,Pareto improvement can be explored based on the node-based and subset-based consensus clustering methods.Case studies on the IEEE 300-bus test system are conducted to verify the effectiveness and superiority of our proposed method. 展开更多
关键词 Consensus clustering network partition bi-objective partition machine learning
原文传递
基于电子路票与连接道路的绕城高速缓解市区交通拥堵方案研究
16
作者 唐继孟 张磊 +3 位作者 李建 朱永祥 蔡路 余岳 《交通运输系统工程与信息》 北大核心 2025年第1期331-344,共14页
为缓解市区交通压力,解决绕城高速免费通行政策引发的局部拥堵和财政补贴压力,本文提出一种结合可交易电子路票和新建连接道路的联合交通管理方案。通过构建双目标双层规划模型,刻画政府部门、绕城高速公司和出行者之间的互动机制。上... 为缓解市区交通压力,解决绕城高速免费通行政策引发的局部拥堵和财政补贴压力,本文提出一种结合可交易电子路票和新建连接道路的联合交通管理方案。通过构建双目标双层规划模型,刻画政府部门、绕城高速公司和出行者之间的互动机制。上层模型描述政府部门和绕城高速公司为实现各自目标而制定的可交易电子路票和新建连接道路的联合方案;下层模型描述出行者在该联合方案下的选择行为,并通过约束绕城高速各路段的流量维持其正常服务水平。此外,设计结合NSGA-II(Non-dominated Sorting Genetic Algorithm II)与FW(Frank-Wolfe)的算法,用于求解该模型。研究结果表明,与现行的绕城高速免费方案和其他单一方案相比,该联合方案具有明显的Pareto改善,能够最大程度地减少系统出行时间(降低18.56%),同时,显著增加绕城高速公司的收益(增长51.5%)。通过对比单一可交易电子路票方案与联合方案下城市道路饱和度的分布发现,联合方案能够更有效地利用绕城高速缓解市区交通拥堵,减少严重拥堵路段数量,并增加非拥堵路段的数量,且不会导致路票价格过高,对出行者更加友好。最后,本文对OD需求、路票收取路段数上限、连接道路新建数量上限和路票价格展开灵敏度分析,探究其对联合方案的影响。 展开更多
关键词 城市交通 联合方案 双目标双层规划 绕城高速 可交易电子路票
在线阅读 下载PDF
基于改进WOA的西南机场群航线经停点优化
17
作者 歹婕 肖蘅 杨彬 《科学技术与工程》 北大核心 2025年第29期12663-12670,共8页
在中长途航线中,经停航线是指航班在飞行途中经过某个地区进行短暂停留,它能够提高客座率,保障更多乘客参与出行,对合理布设资源至关重要。目前航线优化研究普遍采用去除经停点并在单一目标下修改起降点的方式进行研究,这种方式忽略了... 在中长途航线中,经停航线是指航班在飞行途中经过某个地区进行短暂停留,它能够提高客座率,保障更多乘客参与出行,对合理布设资源至关重要。目前航线优化研究普遍采用去除经停点并在单一目标下修改起降点的方式进行研究,这种方式忽略了经停点的旅客需求,优化成本高、难度大。为解决航线经停点优化问题,以西南三省一市内5个主要枢纽机场群为研究对象,建立了用户满意度最高和决策者利益最大的双目标优化模型。与传统固定算法不同,为适应经停点优化研究,采用了启发式算法的改进鲸鱼优化算法(whale optimization algorithm,WOA)对模型进行求解计算。通过对国内干线航线网络的经停点做实证分析验证,研究结果显示,优化后每条经停航线增加了4个备选经停点,旅客满意度提升了17.55%,航司利益提升了6.64%,从决策者和用户两个角度权衡考虑,有效地提升了航线覆盖范围与航班的连通性。 展开更多
关键词 机场群 航线 经停点 双目标优化 改进WOA
在线阅读 下载PDF
基于常态运作与应急保障的医药物资集散点选址—配送优化研究
18
作者 魏孝文 王杜娟 +1 位作者 邱华昕 夏春玉 《运筹与管理》 北大核心 2025年第5期9-15,共7页
为提高医药物资集散点日常保供运行的可靠性和应对突发公共卫生事件应急物资需求的能力,本文考虑了需求点运输距离和规模重要性、集散点服务范围和供应能力、车辆配置水平和运输能力等关键影响因素,从医药企业常态化供应管理和应急处置... 为提高医药物资集散点日常保供运行的可靠性和应对突发公共卫生事件应急物资需求的能力,本文考虑了需求点运输距离和规模重要性、集散点服务范围和供应能力、车辆配置水平和运输能力等关键影响因素,从医药企业常态化供应管理和应急处置的综合视角进行医药物资集散点选址及配送决策。以集散点的建设和物资日常配送成本为常态化运作目标,以集散点对区域各级需求点的可达效率为应急支援目标,建立双目标优化模型。随后针对问题模型结构特性,设计混合的启发式方法策略,对多种规模情景下的算例进行高效求解分析,并得出了Pareto前沿解集,从而提供了不同决策偏好下经济合理的物资集散点布局和运输方案,为医药企业常态化高效经营管理和重要医药物资的及时充分保障提供决策参考。 展开更多
关键词 选址—配送集成 常态化 应急物流 双目标优化 混合启发式
在线阅读 下载PDF
基于改进ε-约束法的废弃物分类回收双目标选址模型
19
作者 杜若君 贾涛 雷栋 《运筹与管理》 北大核心 2025年第5期1-8,共8页
对于城市废弃物处理设施的合理选址,能够帮助提升人民群众的生活质量,及时回收有价值的可再生资源,并有效降低废弃物对于环境可能造成的严重影响。基于此背景,首先,本文考虑废弃物分类回收的要求、处理设施的环境负效应影响等因素,以总... 对于城市废弃物处理设施的合理选址,能够帮助提升人民群众的生活质量,及时回收有价值的可再生资源,并有效降低废弃物对于环境可能造成的严重影响。基于此背景,首先,本文考虑废弃物分类回收的要求、处理设施的环境负效应影响等因素,以总成本和总负效应最小化为目标,构建了一个新的双目标混合整数规划模型,用于确定废弃物处理中心选址以及回收网络的分配方案。进一步,基于经典ε-约束法,通过加入考虑贪婪规则的优化顺序策略与循环参数策略,设计出可求得Pareto前沿的“改进ε-约束法”。再次,通过设计大量数据实验以验证算法及模型的有效性。最后,将所开发的改进ε-约束法应用于西安市废弃物分类回收的真实场景,结果显示本文所提出的模型和算法可能有效改善处理设施的布局规划,为该类设施的实施落地提供策略选择和支持。 展开更多
关键词 双目标设施选址模型 ε-约束法 负效应 废弃物分类回收
在线阅读 下载PDF
Bi-objective optimization models for mitigating traffic congestion in urban road networks 被引量:3
20
作者 Haritha Chellapilla R.Sivanandan +1 位作者 Bhargava Rama Chilukuri Chandrasekharan Rajendran 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2023年第1期86-103,共18页
Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to l... Traffic congestion in road transportation networks is a persistent problem in major metropolitan cities around the world.In this context,this paper deals with exploiting underutilized road capacities in a network to lower the congestion on overutilized links while simultaneously satisfying the system optimal flow assignment for sustainable transportation.Four congestion mitigation strategies are identified based on deviation and relative deviation of link volume from the corresponding capacity.Consequently,four biobjective mathematical programming optimal flow distribution(OFD)models are proposed.The case study results demonstrate that all the proposed models improve system performance and reduce congestion on high volume links by shifting flows to low volumeto-capacity links compared to UE and SO models.Among the models,the system optimality with minimal sum and maximum absolute relative-deviation models(SO-SAR and SO-MAR)showed superior results for different performance measures.The SO-SAR model yielded 50%and 30%fewer links at higher link utilization factors than UE and SO models,respectively.Also,it showed more than 25%improvement in path travel times compared to UE travel time for about 100 paths and resulted in the least network congestion index of1.04 compared to the other OFD and UE models.Conversely,the SO-MAR model yielded the least total distance and total system travel time,resulting in lower fuel consumption and emissions,thus contributing to sustainability.The proposed models contribute towards efficient transportation infrastructure management and will be of interest to transportation planners and traffic managers. 展开更多
关键词 Traffic congestion mitigation SUSTAINABILITY bi-objective optimization Optimal flow distribution models Urban road networks
原文传递
上一页 1 2 22 下一页 到第
使用帮助 返回顶部