期刊文献+
共找到369,057篇文章
< 1 2 250 >
每页显示 20 50 100
Bi-level optimization of regional virtual power plants based on balancing group mechanism
1
作者 hangwei Wu Heping Jia +2 位作者 Lianjun Shi Dunnan Liu Zhenglin Yang 《Global Energy Interconnection》 2025年第6期931-946,共16页
Given the power system balancing challenges induced by high-penetration renewable energy integration,this study systematically reviews international balancing mechanism practices and conducts an in-depth deconstructio... Given the power system balancing challenges induced by high-penetration renewable energy integration,this study systematically reviews international balancing mechanism practices and conducts an in-depth deconstruction of Germany’s balancing group mechanism(BGM).Building on this foundation,this research pioneers the integration of virtual power plants(VPPs)with the BGM in the Chinese context to overcome the limitations of traditional single-entity regulation models in flexibility provision and economic efficiency.A balancing responsibility framework centered on VPPs is innovatively proposed and a regional multi-entity collaboration and bi-level responsibility transfer architecture is constructed.This architecture enables cross-layer coordinated optimization of regional system costs and VPP revenues.The upper layer minimizes regional operational costs,whereas the lower layer enhances the operational revenues of VPPs through dynamic gaming between deviation regulation service income and penalty costs.Compared with traditional centralized regulation models,the proposed method reduces system operational costs by 29.1%in typical regional cases and increases VPP revenues by 24.9%.These results validate its dual optimization of system economics and participant incentives through market mechanisms,providing a replicable theoretical paradigm and practical pathway for designing balancing mechanisms in new power systems. 展开更多
关键词 Balancing mechanism Balancing responsible party bi-level optimization Operation mode Virtual power plant
在线阅读 下载PDF
A Bi-Level Optimization Model and Hybrid Evolutionary Algorithm for Wind Farm Layout with Different Turbine Types
2
作者 Erping Song Zipin Yao 《Energy Engineering》 2025年第12期5129-5147,共19页
Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and eco... Wind farm layout optimization is a critical challenge in renewable energy development,especially in regions with complex terrain.Micro-siting of wind turbines has a significant impact on the overall efficiency and economic viability of wind farm,where the wake effect,wind speed,types of wind turbines,etc.,have an impact on the output power of the wind farm.To solve the optimization problem of wind farm layout under complex terrain conditions,this paper proposes wind turbine layout optimization using different types of wind turbines,the aim is to reduce the influence of the wake effect and maximize economic benefits.The linear wake model is used for wake flow calculation over complex terrain.Minimizing the unit energy cost is taken as the objective function,considering that the objective function is affected by cost and output power,which influence each other.The cost function includes construction cost,installation cost,maintenance cost,etc.Therefore,a bi-level constrained optimization model is established,in which the upper-level objective function is to minimize the unit energy cost,and the lower-level objective function is to maximize the output power.Then,a hybrid evolutionary algorithm is designed according to the characteristics of the decision variables.The improved genetic algorithm and differential evolution are used to optimize the upper-level and lower-level objective functions,respectively,these evolutionary operations search for the optimal solution as much as possible.Finally,taking the roughness of different terrain,wind farms of different scales and different types of wind turbines as research scenarios,the optimal deployment is solved by using the algorithm in this paper,and four algorithms are compared to verify the effectiveness of the proposed algorithm. 展开更多
关键词 bi-level optimization genetic algorithm differential evolution hybrid evolutionary algorithm wind farm layout
在线阅读 下载PDF
Convergence Rate Analysis of Modified BiG-SAM for Solving Bi-Level Optimization Problems Based on S-FISTA
3
作者 Nishi Xiaoyin Lin Yang 《Journal of Applied Mathematics and Physics》 2025年第4期1555-1576,共22页
In this paper,we consider a more general bi-level optimization problem,where the inner objective function is consisted of three convex functions,involving a smooth and two non-smooth functions.The outer objective func... In this paper,we consider a more general bi-level optimization problem,where the inner objective function is consisted of three convex functions,involving a smooth and two non-smooth functions.The outer objective function is a classical strongly convex function which may not be smooth.Motivated by the smoothing approaches,we modify the classical bi-level gradient sequential averaging method to solve the bi-level optimization problem.Under some mild conditions,we obtain the convergence rate of the generated sequence,and then based on the analysis framework of S-FISTA,we show the global convergence rate of the proposed algorithm. 展开更多
关键词 bi-level optimization Convex Problems First-Order Methods Proximal Gradient Method Sequential Averaging Method Moreau Envelope
在线阅读 下载PDF
An Adaptive Cubic Regularisation Algorithm Based on Affine Scaling Methods for Constrained Optimization
4
作者 PEI Yonggang WANG Jingyi 《应用数学》 北大核心 2026年第1期258-277,共20页
In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op... In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported. 展开更多
关键词 Constrained optimization Adaptive cubic regularisation Affine scaling Global convergence
在线阅读 下载PDF
Bi-Level Collaborative Optimization of Electricity-Carbon Integrated Demand Response for Energy-Intensive Industries under Source-Load Interaction
5
作者 Huaihu Wang Wen Chen +5 位作者 Jin Yang Rui Su Jiale Li Liao Yuan Zhaobin Du Yujie Meng 《Energy Engineering》 2025年第9期3867-3890,共24页
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ... Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems. 展开更多
关键词 Carbon-aware demand response bi-level collaborative optimization dynamic carbon emission factor industrial flexible loads
在线阅读 下载PDF
Optimal scheduling method for multi-regional integrated energy system based on dynamic robust optimization algorithm and bi-level Stackelberg model
6
作者 Bo Zhou Erchao Li Wenjing Liang 《Global Energy Interconnection》 2025年第3期510-521,共12页
In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants ... In this study,we construct a bi-level optimization model based on the Stackelberg game and propose a robust optimization algorithm for solving the bi-level model,assuming an actual situation with several participants in energy trading.Firstly,the energy trading process is analyzed between each subject based on the establishment of the operation framework of multi-agent participation in energy trading.Secondly,the optimal operation model of each energy trading agent is established to develop a bi-level game model including each energy participant.Finally,a combination algorithm of improved robust optimization over time(ROOT)and CPLEX is proposed to solve the established game model.The experimental results indicate that under different fitness thresholds,the robust optimization results of the proposed algorithm are increased by 56.91%and 68.54%,respectively.The established bi-level game model effectively balances the benefits of different energy trading entities.The proposed algorithm proposed can increase the income of each participant in the game by an average of 8.59%. 展开更多
关键词 Robust optimization over time Integrated energy system Dynamic problem Stackelberg game
在线阅读 下载PDF
Bi-level optimization based two-stage market clearing model considering guaranteed accommodation of renewable energy generation 被引量:6
7
作者 Qianya He Zhenjia Lin +3 位作者 Haoyong Chen Xinyun Dai Yirui Li Xin Zeng 《Protection and Control of Modern Power Systems》 2022年第1期433-445,共13页
The existing electricity market mechanisms designed to promote the consumption of renewable energy generation complicate network participation in market transactions owing to an unfair market competition environment,w... The existing electricity market mechanisms designed to promote the consumption of renewable energy generation complicate network participation in market transactions owing to an unfair market competition environment,where the low cost renewable energy generation is not reflected in the high bidding price of high cost conventional energy generation.This study addresses this issue by proposing a bi-level optimization based two-stage market clearing model that considers the bidding strategies of market players,and guarantees the accommodation of renewable energy generation.The first stage implements a dual-market clearing mechanism that includes a unified market for trading the power generations of both renewable energy and conventional energy units,and a subsidy market reserved exclusively for conventional generation units.A re-adjustment clearing mechanism is then proposed in the second stage to accommodate the power generation of remaining renewable energy units after first stage energy allocations.Each stage of the proposed model is further described as a bi-level market equilibrium problem and is solved using a co-evolutionary algorithm.Finally,numerical results involving an improved IEEE 39-bus system dem-onstrate that the proposed two-stage model meets the basic requirements of incentive compatibility and individual rationality.It can facilitate the rational allocation of resources,promote the economical operation of electric power grids,and enhance social welfare. 展开更多
关键词 Market clearing Renewable energy Bidding strategy Guaranteed accommodation bi-level optimization Fair competition
在线阅读 下载PDF
Gradient-based algorithms for multi-objective bi-level optimization 被引量:1
8
作者 Xinmin Yang Wei Yao +2 位作者 Haian Yin Shangzhi Zeng Jin Zhang 《Science China Mathematics》 SCIE CSCD 2024年第6期1419-1438,共20页
Multi-objective bi-level optimization(MOBLO)addresses nested multi-objective optimization problems common in a range of applications.However,its multi-objective and hierarchical bi-level nature makes it notably comple... Multi-objective bi-level optimization(MOBLO)addresses nested multi-objective optimization problems common in a range of applications.However,its multi-objective and hierarchical bi-level nature makes it notably complex.Gradient-based MOBLO algorithms have recently grown in popularity,as they effectively solve crucial machine learning problems like meta-learning,neural architecture search,and reinforcement learning.Unfortunately,these algorithms depend on solving a sequence of approximation subproblems with high accuracy,resulting in adverse time and memory complexity that lowers their numerical efficiency.To address this issue,we propose a gradient-based algorithm for MOBLO,called gMOBA,which has fewer hyperparameters to tune,making it both simple and efficient.Additionally,we demonstrate the theoretical validity by accomplishing the desirable Pareto stationarity.Numerical experiments confirm the practical efficiency of the proposed method and verify the theoretical results.To accelerate the convergence of gMOBA,we introduce a beneficial L2O(learning to optimize)neural network(called L2O-gMOBA)implemented as the initialization phase of our gMOBA algorithm.Comparative results of numerical experiments are presented to illustrate the performance of L2O-gMOBA. 展开更多
关键词 MULTI-OBJECTIVE bi-level optimization convergence analysis Pareto stationary learning to optimize
原文传递
Bi-level optimization model applications in managing air emissions from ships:A review 被引量:2
9
作者 Jingwen Qi Shuaian Wang Harilaos Psaraftis 《Communications in Transportation Research》 2021年第1期171-175,共5页
Ship air emissions are recognized as one of the key concerns of the maritime industry.Competent authorities have issued various regulations to manage air emissions from ships.Although the authorities are policy makers... Ship air emissions are recognized as one of the key concerns of the maritime industry.Competent authorities have issued various regulations to manage air emissions from ships.Although the authorities are policy makers,the effectiveness of policies is up to the shipping industry who operates the vessels and terminals to fulfill maritime transportation works.Given this characteristic,bi-level optimization model has been widely adopted in studies that optimize policy design or evaluate its effectiveness.The framework of a typical bi-level optimization model for ship emission management problem is given to show the basic structure of similar issues.A series of applications of bi-level optimization model in managing ship emissions is reviewed,including cases of Energy Efficiency Design Index,Emissions Control Area,Market Based Measure,Carbon Intensity Indicator,and Vessel Speed Reduction Incentive Program.We hope this paper can enlighten scholars interested in this area and provide help for them. 展开更多
关键词 bi-level optimization model Ship air emissions Fleet deployment Ship operation
在线阅读 下载PDF
Necessary Optimality Conditions for Semi-vectorial Bi-level Optimization with Convex Lower Level:Theoretical Results and Applications to the Quadratic Case
10
作者 Julien Collonge 《Journal of the Operations Research Society of China》 EI CSCD 2021年第3期691-712,共22页
This paper explores related aspects to post-Pareto analysis arising from the multicriteria optimization problem.It consists of two main parts.In the first one,we give first-order necessary optimality conditions for a ... This paper explores related aspects to post-Pareto analysis arising from the multicriteria optimization problem.It consists of two main parts.In the first one,we give first-order necessary optimality conditions for a semi-vectorial bi-level optimization problem:the upper level is a scalar optimization problem to be solved by the leader,and the lower level is a multi-objective optimization problem to be solved by several followers acting in a cooperative way(greatest coalition multi-players game).For the lower level,we deal with weakly or properly Pareto(efficient)solutions and we consider the so-called optimistic problem,i.e.when followers choose amongst Pareto solutions one which is the most favourable for the leader.In order to handle reallife applications,in the second part of the paper,we consider the case where each follower objective is expressed in a quadratic form.In this setting,we give explicit first-order necessary optimality conditions.Finally,some computational results are given to illustrate the paper. 展开更多
关键词 bi-level optimization Multi-objective optimization Post-Pareto optimization Multi-objective convex optimization Quadratic optimization
原文传递
A bi-level optimization for a make-to-order manufacturing supply chain planning:a case in the steel industry Lanndon
11
作者 Lanndon A.Ocampo Neelesh N.Vasnani +2 位作者 Felixter Leone S.Chua Lance Brandon M.Pacio Brian J.Galli 《Journal of Management Analytics》 EI 2021年第4期598-621,共24页
This paper presents an actual case application of a newly developed gametheoretic model in analyzing a single manufacturer-many supplier,multi-period,make-to-order supply chain with fuzzy parameters.The supply chain u... This paper presents an actual case application of a newly developed gametheoretic model in analyzing a single manufacturer-many supplier,multi-period,make-to-order supply chain with fuzzy parameters.The supply chain under consideration comprises an exclusive supplier for every component required by the manufacturer in producing its product.In certain instances,some supply chains enable the manufacturer to opt for a third-party subcontractor to produce a portion of its demand.We assume that the supply chain faces a price and lead-time-sensitive demand,which is relevant in a make-to-order environment.The vertical interaction within the supply chain is played as a Stackelberg game,where the manufacturer is considered the leader and the suppliers as the followers.Results show some important managerial insights in supply chain planning under a make-to-order condition. 展开更多
关键词 MAKE-TO-ORDER supply chain production planning Stackelberg game bi-level optimization
原文传递
Optimization of the bioconversion of glycerol to ethanol using Escherichia coli by implementing a bi-level programming framework for proposing gene transcription control strategies based on genetic algorithms
12
作者 Carol Milena Barreto-Rodriguez Jessica Paola Ramirez-Angulo +2 位作者 Jorge Mario Gomez-Ramirez Luke Achenie Andres Fernando Gonzalez-Barrios 《Advances in Bioscience and Biotechnology》 2012年第4期336-343,共8页
In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approach... In silico approaches for metabolites optimization have been derived from the flood of sequenced and annotated genomes. However, there exist still numerous degrees of freedom in terms of optimization algorithm approaches that can be exploited in order to enhance yield of processes which are based on biological reactions. Here, we propose an evolutionary approach aiming to suggest different mutant for augmenting ethanol yield using glycerol as substrate in Escherichia coli. We found that this algorithm, even though is far from providing the global optimum, is able to uncover genes that a global optimizer would be incapable of. By over-expressing accB, eno, dapE, and accA mutants in ethanol production was augmented up to 2 fold compared to its counterpart E. coli BW25113. 展开更多
关键词 bi-level optimization Escherichia coli Metabolic Flux Analysis Genetic Algorithm
暂未订购
Multidisciplinary Design Optimization of A Human Occupied Vehicle Based on Bi-Level Integrated System Collaborative Optimization 被引量:5
13
作者 赵敏 崔维成 李翔 《China Ocean Engineering》 SCIE EI CSCD 2015年第4期599-610,共12页
The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience depend... The design of Human Occupied Vehicle (HOV) is a typical multidisciplinary problem, but heavily dependent on the experience of naval architects at present engineering design. In order to relieve the experience dependence and improve the design, a new Multidisciplinary Design Optimization (MDO) method "Bi-Level Integrated System Collaborative Optimization (BLISCO)" is applied to the conceptual design of an HOV, which consists of hull module, resistance module, energy module, structure module, weight module, and the stability module. This design problem is defined by 21 design variables and 23 constraints, and its objective is to maximize the ratio of payload to weight. The results show that the general performance of the HOV can be greatly improved by BLISCO. 展开更多
关键词 Multidisciplinary Design optimization (MDO) Human Occupied Vehicle (HOD bi-level Integrated SystemCollaborative optimization (BLISCO) general performance
在线阅读 下载PDF
Prediction and optimization of flue pressure in sintering process based on SHAP 被引量:2
14
作者 Mingyu Wang Jue Tang +2 位作者 Mansheng Chu Quan Shi Zhen Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期346-359,共14页
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a... Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect. 展开更多
关键词 sintering process flue pressure shapley additive explanation PREDICTION optimization
在线阅读 下载PDF
Optimal planning of energy storage system in active distribution system based on fuzzy multi-objective bi-level optimization 被引量:12
15
作者 Rui LI Wei WANG +1 位作者 Zhe CHEN Xuezhi WU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2018年第2期342-355,共14页
A fuzzy multi-objective bi-level optimization problem is proposed to model the planning of energy storage system(ESS) in active distribution systems(ADS). The proposed model enables us to take into account how optimal... A fuzzy multi-objective bi-level optimization problem is proposed to model the planning of energy storage system(ESS) in active distribution systems(ADS). The proposed model enables us to take into account how optimal operation strategy of ESS in the lower level can affect and be affected by the optimal allocation of ESS in the upper level. The power characteristic model of micro-grid(MG)and typical daily scenarios are established to take full consideration of time-variable nature of renewable energy generations(REGs) and load demand while easing the burden of computation. To solve the bi-level mixed integer problem, a multi-subgroup hierarchical chaos hybrid algorithm is introduced based on differential evolution(DE) and particle swarm optimization(PSO). The modified IEEE-33 bus benchmark distribution system is utilized to investigate the availability and effectiveness of the proposed model and the hybrid algorithm. Results indicate that the planningmodel gives an adequate consideration to the optimal operation and different roles of ESS, and has the advantages of objectiveness and reasonableness. 展开更多
关键词 ACTIVE distribution SYSTEM Energy STORAGE SYSTEM optimal PLANNING bi-level PROGRAMMING FUZZY multiple objective
原文传递
Recent Advancements in the Optimization Capacity Configuration and Coordination Operation Strategy of Wind-Solar Hybrid Storage System 被引量:1
16
作者 Hongliang Hao Caifeng Wen +5 位作者 Feifei Xue Hao Qiu Ning Yang Yuwen Zhang Chaoyu Wang Edwin E.Nyakilla 《Energy Engineering》 EI 2025年第1期285-306,共22页
Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe... Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems. 展开更多
关键词 Electric-thermal hybrid storage modal decomposition multi-objective genetic algorithm capacity optimization allocation operation strategy
在线阅读 下载PDF
A Modified PRP-HS Hybrid Conjugate Gradient Algorithm for Solving Unconstrained Optimization Problems 被引量:1
17
作者 LI Xiangli WANG Zhiling LI Binglan 《应用数学》 北大核心 2025年第2期553-564,共12页
In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradien... In this paper,we propose a three-term conjugate gradient method for solving unconstrained optimization problems based on the Hestenes-Stiefel(HS)conjugate gradient method and Polak-Ribiere-Polyak(PRP)conjugate gradient method.Under the condition of standard Wolfe line search,the proposed search direction is the descent direction.For general nonlinear functions,the method is globally convergent.Finally,numerical results show that the proposed method is efficient. 展开更多
关键词 Conjugate gradient method Unconstrained optimization Sufficient descent condition Global convergence
在线阅读 下载PDF
Research progress of structural regulation and composition optimization to strengthen absorbing mechanism in emerging composites for efficient electromagnetic protection 被引量:4
18
作者 Pengfei Yin Di Lan +7 位作者 Changfang Lu Zirui Jia Ailing Feng Panbo Liu Xuetao Shi Hua Guo Guanglei Wu Jian Wang 《Journal of Materials Science & Technology》 2025年第1期204-223,共20页
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro... With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well. 展开更多
关键词 Microwave absorption Structural regulation Performance optimization Emerging composites Synthetic strategy
原文传递
A survey on multi-objective,model-based,oil and gas field development optimization:Current status and future directions 被引量:1
19
作者 Auref Rostamian Matheus Bernardelli de Moraes +1 位作者 Denis Jose Schiozer Guilherme Palermo Coelho 《Petroleum Science》 2025年第1期508-526,共19页
In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionall... In the area of reservoir engineering,the optimization of oil and gas production is a complex task involving a myriad of interconnected decision variables shaping the production system's infrastructure.Traditionally,this optimization process was centered on a single objective,such as net present value,return on investment,cumulative oil production,or cumulative water production.However,the inherent complexity of reservoir exploration necessitates a departure from this single-objective approach.Mul-tiple conflicting production and economic indicators must now be considered to enable more precise and robust decision-making.In response to this challenge,researchers have embarked on a journey to explore field development optimization of multiple conflicting criteria,employing the formidable tools of multi-objective optimization algorithms.These algorithms delve into the intricate terrain of production strategy design,seeking to strike a delicate balance between the often-contrasting objectives.Over the years,a plethora of these algorithms have emerged,ranging from a priori methods to a posteriori approach,each offering unique insights and capabilities.This survey endeavors to encapsulate,catego-rize,and scrutinize these invaluable contributions to field development optimization,which grapple with the complexities of multiple conflicting objective functions.Beyond the overview of existing methodologies,we delve into the persisting challenges faced by researchers and practitioners alike.Notably,the application of multi-objective optimization techniques to production optimization is hin-dered by the resource-intensive nature of reservoir simulation,especially when confronted with inherent uncertainties.As a result of this survey,emerging opportunities have been identified that will serve as catalysts for pivotal research endeavors in the future.As intelligent and more efficient algo-rithms continue to evolve,the potential for addressing hitherto insurmountable field development optimization obstacles becomes increasingly viable.This discussion on future prospects aims to inspire critical research,guiding the way toward innovative solutions in the ever-evolving landscape of oil and gas production optimization. 展开更多
关键词 Derivative-free algorithms Ensemble-based optimization Gradient-based methods Life-cycle optimization Reservoir field development and management
原文传递
Physics and data-driven alternative optimization enabled ultra-low-sampling single-pixel imaging 被引量:2
20
作者 Yifei Zhang Yingxin Li +5 位作者 Zonghao Liu Fei Wang Guohai Situ Mu Ku Chen Haoqiang Wang Zihan Geng 《Advanced Photonics Nexus》 2025年第3期55-66,共12页
Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ul... Single-pixel imaging(SPI)enables efficient sensing in challenging conditions.However,the requirement for numerous samplings constrains its practicality.We address the challenge of high-quality SPI reconstruction at ultra-low sampling rates.We develop an alternative optimization with physics and a data-driven diffusion network(APD-Net).It features alternative optimization driven by the learned task-agnostic natural image prior and the task-specific physics prior.During the training stage,APD-Net harnesses the power of diffusion models to capture data-driven statistics of natural signals.In the inference stage,the physics prior is introduced as corrective guidance to ensure consistency between the physics imaging model and the natural image probability distribution.Through alternative optimization,APD-Net reconstructs data-efficient,high-fidelity images that are statistically and physically compliant.To accelerate reconstruction,initializing images with the inverse SPI physical model reduces the need for reconstruction inference from 100 to 30 steps.Through both numerical simulations and real prototype experiments,APD-Net achieves high-quality,full-color reconstructions of complex natural images at a low sampling rate of 1%.In addition,APD-Net’s tuning-free nature ensures robustness across various imaging setups and sampling rates.Our research offers a broadly applicable approach for various applications,including but not limited to medical imaging and industrial inspection. 展开更多
关键词 single-pixel imaging deep learning alternative optimization
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部