期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
PROSPECT模型的特征波长优化与作物叶绿素含量检测 被引量:5
1
作者 张俊逸 高德华 +4 位作者 宋迪 乔浪 孙红 李民赞 李莉 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第5期1514-1521,共8页
叶绿素是作物生长诊断的重要参数,对其进行高效检测是农田精细化管理的基础。PROSPECT模型是作物光谱学检测研究的重要工具,可为建立高精度叶绿素诊断模型提供数据集基础。为了建立具有普适性的田间玉米作物叶绿素含量检测模型,使用PROS... 叶绿素是作物生长诊断的重要参数,对其进行高效检测是农田精细化管理的基础。PROSPECT模型是作物光谱学检测研究的重要工具,可为建立高精度叶绿素诊断模型提供数据集基础。为了建立具有普适性的田间玉米作物叶绿素含量检测模型,使用PROSPECT模型输入叶片结构参数和生化参数模拟叶片400~2500nm波段反射率曲线10650条。在其他参数设置保持不变的情况下,分析光谱反射率曲线对叶绿素含量参数的敏感性,结果显示叶绿素含量仅在400~780nm区间对光谱反射率曲线产生影响。讨论了3种叶绿素检测特征波长筛选策略,分别为:根据敏感性分析结果,选出548~610和694~706nm区域共计76个波长,记为SEN-BAND;基于反向区间偏最小二乘法(Bi-PLS)筛选5个区间共计91个波长,记为BPBAND;基于连续投影算法(SPA),在叶绿素影响区域400~780nm筛选10个特征波长,记为SPA-BAND。进而使用2019年、2020年两年期田间实测玉米叶片光谱反射率曲线和叶绿素含量数据,分别应用上述3种方法选取的特征波长构建玉米叶片叶绿素含量检测模型。结果显示,使用SPA-BAND特征波长构建的模型,在两年期数据中均得到最佳结果。2019年数据模型建模集决定系数(R2c)为0.8156,建模集均方根误差RMSEC为2.9086,验证集决定系数(R2v)为0.7995,验证集均方根误差RMSEV为2.9977。2020年数据模型建模集决定系数(R2c)为0.9492,建模集均方根误差RMSEC为0.9768,验证集决定系数(R2v)为0.9102,验证集均方根误差RMSEV为1.5629。表明,基于PROSPECT模型筛选叶绿素含量特征波长建立的叶绿素诊断模型具有普适性。 展开更多
关键词 PROSPECT模型 叶绿素 波长筛选 SPA bi-pls PLSR
在线阅读 下载PDF
近红外光谱技术定量检测果味啤中的果汁含量 被引量:7
2
作者 盛晓慧 李宗朋 +4 位作者 李子文 朱婷婷 王健 尹建军 宋全厚 《食品与发酵工业》 CAS CSCD 北大核心 2020年第4期247-252,共6页
该文以近红外光谱分析技术快速测定菠萝啤中果汁含量为目的,采用了后向间隔偏最小二乘(backward interval partial least squares,Bi-PLS)、组合间隔偏最小二乘(synergy interval partial least squares,Si-PLS)以及遗传算法(genetic al... 该文以近红外光谱分析技术快速测定菠萝啤中果汁含量为目的,采用了后向间隔偏最小二乘(backward interval partial least squares,Bi-PLS)、组合间隔偏最小二乘(synergy interval partial least squares,Si-PLS)以及遗传算法(genetic algorithm,GA)提取特征波长以提高模型性能。研究结果表明,基于Si-PLS提取的特征波长结合偏最小二乘法(partial least squares,PLS)建立的定量分析模型效果最好,从原始光谱范围4000~10000 cm^-1内筛选出3个特征光谱区间,分别为(4484~4960,5600~6051,7844~8080)cm^-1,共94个特征变量,比原始1501个波长变量减少了93.7%,验证集的均方根误差和决定系数分别为0.18%、0.89,范围误差比为3.17。实验结果表明,近红外光谱分析技术用于测定果味啤中的果汁含量是可行的,这为快速高效测定菠萝啤果汁含量提供了一种方法依据。 展开更多
关键词 菠萝啤 果汁含量 近红外光谱 组合间隔偏最小二乘(Si-PLS) 后向间隔偏最小二乘(bi-pls) 遗传算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部