A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy ...A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy were char-acterized as a function of plateup parameters, and process conditions were established to deposit a Ni-Fe thin film with a high permeability (~1000) and a low coercivity (0.6 Oersted). Conventional GMI sensors are uni-directional and are several millimeters long. In this work, a spiral-shaped sensor using electroplated Ni-Fe permalloy to detect bi-directional magnetic field is reported. Excellent bi-directional magnetic field sensing has been demonstrated using the 1 mm2 compact double-spiral structure.展开更多
The emergence of SARS-CoV-2 variants and drug-resistant mutants emphasizes the urgent need to develop novel antiviral agents.In the present study,we examined the therapeutic effect of the Chinese medicinal herb,Scutel...The emergence of SARS-CoV-2 variants and drug-resistant mutants emphasizes the urgent need to develop novel antiviral agents.In the present study,we examined the therapeutic effect of the Chinese medicinal herb,Scutellaria barbata D.Don(SBD),against SARS-CoV-2 infection both in vitro and in vivo.Using a viral replicon particle(VRP)-based mouse model of SARS-CoV-2 infection,our study revealed that SBD extracts can reduce viral load in mouse lungs and alleviate the viral induced pneumonia.In vitro antiviral determination further validated the direct acting antiviral efficacy of SBD extracts against SARS-CoV-2 replication.Mechanistic studies demonstrated that SBD can act against SARS-CoV2 replication by targeting both 3-chymotrypsin-like and papain-like cysteine proteases,via a combination of multiple active constituents.Moreover,SBD can modulate the host inflammation response in a bi-directional manner,which also contribute to the mitigation of viral induced acute lung injury.In summary,our study provides SBD as a promising therapeutic agent to combat SARS-CoV-2 infections that merit further development.展开更多
Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o...Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.展开更多
Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexib...Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.展开更多
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-in...Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.展开更多
Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks ac...Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.展开更多
The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show...The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.展开更多
Objective: To investigate the role of collagen IV and PAS positive substancesecreted by tumor cells in vasculogenic mimicry (VM) and the effects of VM on tumor cells expressingVEGF. Methods: 158 cases of bi-direction ...Objective: To investigate the role of collagen IV and PAS positive substancesecreted by tumor cells in vasculogenic mimicry (VM) and the effects of VM on tumor cells expressingVEGF. Methods: 158 cases of bi-direction differential malignant tumor specimens withparaffin-embedded were enrolled into our study and made tissue microarray which were dual-stainedwith CD31-PAS and stained with collagen IV. The difference of the areas and distribution withpattern surrounded by between CD31 and PAS positive respectively were identified via grid-counting,as well as the difference of VEGF expression with VE absent and present. Results: The basementmembrane of VM was both PAS and collagen IV positive. VEGF expression in the bi-directiondifferential malignant tumor was higher VM-absent than VM-present and the difference wasstatistically significance in malignant melanoma and alveolar rhabdomyosarcoma (P 【 0.05).Conclusion: PAS positive substance and collagen IV compose the wall of VE and VE could provide theoxygen and nutrition for tumor growth and progression.展开更多
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity ...The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.展开更多
The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual incom...The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual income and global benefits and build the logical architecture of the multi-agent system. Besides, to verify the feasibility of the method, the cyclic neural network is optimized, the bi-directional coordination network is built as the training network for deep learning, and specific training scenes are simulated as the training background. After a certain number of training iterations, the model can learn simple strategies autonomously. Also,as the training time increases, the complexity of learning strategies rises gradually. Strategies such as obstacle avoidance, firepower distribution and collaborative cover are adopted to demonstrate the achievability of the model. The model is verified to be realizable by the examples of obstacle avoidance, fire distribution and cooperative cover. Under the same resource background, the model exhibits better convergence than other deep learning training networks, and it is not easy to fall into the local endless loop.Furthermore, the ability of the learning strategy is stronger than that of the training model based on rules, which is of great practical values.展开更多
The constitutive promoter of cauliflower mosaic virus 35S (CaMV 35S) is a polar unidirectional promoter and is widely used in plant genetic engineering. In the present study, the unidirectional CaMV 35S promoter has...The constitutive promoter of cauliflower mosaic virus 35S (CaMV 35S) is a polar unidirectional promoter and is widely used in plant genetic engineering. In the present study, the unidirectional CaMV 35S promoter has been modified to a bi-directional promoter by fusing its minimal promoter element to the 5' end of CaMV 35S promoter in the opposite orientation. To qualitatively and quantitatively estimate its bi-directional transcriptional function and activity, two visible reporter genes, gusA (13-glucuronidase, GUS) and gfp (green fluorescent protein, GFP), were fused to the two ends of the promoter in bi-orientations ending with NOS terminator sequences, respectively. Stable expression of gusA and gfp genes in transgenic tobacco (Nicotiana tabacum L.) was visulized by histochemically staining for GUS and fluorescence microscopic observation under UV for GFP in transgenic plants. The expression of two reporter genes showed that the constructed bi-directional promoter did have the bi-directional transcriptional function in both expected orientations. The quantitative estimation of GUS and GFP were determined on a HITACHI F1000 Fluorescence Spectrophotometer with various wavelengths of excitation and emission. The GUS activity varied from g to 250 pmol 4-MU/min/mg protein and the GFP content varied from 0.9 to 1.8 μg/ mg protein in various lines of transgenic tobacco plants. Higher GUS activity generally coupled with lower GFP content, and vice versa.展开更多
After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catal...After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.展开更多
The one-dimensional (1D) spatial distributions of OH absolute concentration in methane/air laminar premixed flat flame under different equivalence ratios at atmospheric pressure are investigated by using bi-directio...The one-dimensional (1D) spatial distributions of OH absolute concentration in methane/air laminar premixed flat flame under different equivalence ratios at atmospheric pressure are investigated by using bi-directional laser-induced flu- orescence (LIF) detection scheme combined with the direct absorption spectroscopy. The effective peak absorption cross section and the average temperature at a height of 2 mm above the burner are obtained by exciting absorption on the Q1(8) rotational line in the A2∑+ (Dt = 0) ←- X2∏ (v = 0) at 309.240 nm. The measured values are 1.86×10-15 cm2 and 1719 K, respectively. Spatial filtering and frequency filtering methods of reducing noise are used to deal with the experi- mental data, and the smoothing effects are also compared using the two methods. The spatial distribution regularities of OH concentration are obtained with the equivalence ratios ranging from 0.8 to 1.3. The spatial resolution of the measured result is 84μm. Finally, a comparison is made between the experimental result of this paper and other relevant study results.展开更多
In this paper, we propose and experimentally demonstrate a bi-directional indoor communication system based on visible light RGB-LED. Spectrally efficient modulation formats (QAM-OFDM), advanced digital signal proce...In this paper, we propose and experimentally demonstrate a bi-directional indoor communication system based on visible light RGB-LED. Spectrally efficient modulation formats (QAM-OFDM), advanced digital signal processing, pre- and post- equalization are adopted to compensate the severe frequency response of indoor channel. In this system, we utilize red-green-blue Light emitting diodes (LEDs), of which each color can be used to carry different signals. For downlink, the low frequencies of each color are used while for uplink, the high frequencies are used. The overall data rate of downlink and uplink are 1.15-Gb/s and 300-Mb/s. The bit error ratios (BERs) for all channels after 0.7 m indoor delivery are below pre-forward- error-correction (pre-FEC) threshold of 3.8×10-3. To the best of our knowledge, this is the highest data rate in bi-directional visible light communication system.展开更多
Bi-directional static loading test adopting load cells is widely used around the world at present,with increase in diameter and length of deep foundations.In this paper,a new simple conversion method to predict the eq...Bi-directional static loading test adopting load cells is widely used around the world at present,with increase in diameter and length of deep foundations.In this paper,a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism.The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant.Some new load cells,test procedure,and construction technology were adopted based on the applications to different deep foundations,which could enlarge the application scopes of bi-directional loading test.A new type of bi-directional loading test for pipe pile was conducted,in which the load cell was installed and loaded after the pipe pile with special connector has been set up.Unlike the conventional bi-directional loading test,the load cell can be reused and shows an evident economic benefit.展开更多
The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the...The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the shear deformation and rotary inertia are both considered,the two coupled governing differential motion equations for the deflection and rotation are established.The analytical bending solutions for various boundary conditions are derived.In the vibrational analysis of FG cylindrical beams,the two governing equations are firstly changed to a single equation by means of an auxiliary function,and then the vibration mode is expanded into shifted Chebyshev polynomials.Numerical examples are given to investigate the effects of the material gradient indices on the deflections,the stress distributions,and the eigenfrequencies of the cylindrical beams,respectively.By comparing the obtained numerical results with those obtained by the three-dimensional(3D)elasticity theory and the Timoshenko beam theory,the effectiveness of the present approach is verified.展开更多
Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimi...Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes.展开更多
Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,m...Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model.展开更多
文摘A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy were char-acterized as a function of plateup parameters, and process conditions were established to deposit a Ni-Fe thin film with a high permeability (~1000) and a low coercivity (0.6 Oersted). Conventional GMI sensors are uni-directional and are several millimeters long. In this work, a spiral-shaped sensor using electroplated Ni-Fe permalloy to detect bi-directional magnetic field is reported. Excellent bi-directional magnetic field sensing has been demonstrated using the 1 mm2 compact double-spiral structure.
基金supported by the National Natural Science Foundation of China(82274204 and 82104134)the Natural Science Foundation of Shandong Province,China(ZR2024QH110)+1 种基金the Major Basic Program of Shandong Natural Science Foundation,China(ZR2021ZD17)the Project of Youth Innovation Team of Shandong Province(2022KJ254).
文摘The emergence of SARS-CoV-2 variants and drug-resistant mutants emphasizes the urgent need to develop novel antiviral agents.In the present study,we examined the therapeutic effect of the Chinese medicinal herb,Scutellaria barbata D.Don(SBD),against SARS-CoV-2 infection both in vitro and in vivo.Using a viral replicon particle(VRP)-based mouse model of SARS-CoV-2 infection,our study revealed that SBD extracts can reduce viral load in mouse lungs and alleviate the viral induced pneumonia.In vitro antiviral determination further validated the direct acting antiviral efficacy of SBD extracts against SARS-CoV-2 replication.Mechanistic studies demonstrated that SBD can act against SARS-CoV2 replication by targeting both 3-chymotrypsin-like and papain-like cysteine proteases,via a combination of multiple active constituents.Moreover,SBD can modulate the host inflammation response in a bi-directional manner,which also contribute to the mitigation of viral induced acute lung injury.In summary,our study provides SBD as a promising therapeutic agent to combat SARS-CoV-2 infections that merit further development.
基金supported by the National Natural Science Foundation of China(72271213)the Shenzhen Science and Technology Program(JCYJ20220530143800001 and RCYX20221008092927070)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515240024)the National Key Research and Development Program of China(2022YFB2403500).
文摘Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.
基金supported by the National Key Research and Development Program of China(2023YFB3809800)the National Natural Science Foundation of China(52172249,52525601)+2 种基金the Chinese Academy of Sciences Talents Program(E2290701)the Jiangsu Province Talents Program(JSSCRC2023545)the Special Fund Project of Carbon Peaking Carbon Neutrality Science and Technology Innovation of Jiangsu Province(BE2022011).
文摘Flexible fiber sensors,However,traditional methods face challenges in fabricating low-cost,large-scale fiber sensors.In recent years,the thermal drawing process has rapidly advanced,offering a novel approach to flexible fiber sensors.Through the preform-tofiber manufacturing technique,a variety of fiber sensors with complex functionalities spanning from the nanoscale to kilometer scale can be automated in a short time.Examples include temperature,acoustic,mechanical,chemical,biological,optoelectronic,and multifunctional sensors,which operate on diverse sensing principles such as resistance,capacitance,piezoelectricity,triboelectricity,photoelectricity,and thermoelectricity.This review outlines the principles of the thermal drawing process and provides a detailed overview of the latest advancements in various thermally drawn fiber sensors.Finally,the future developments of thermally drawn fiber sensors are discussed.
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
文摘Diabetes mellitus represents a major global health issue,driving the need for noninvasive alternatives to traditional blood glucose monitoring methods.Recent advancements in wearable technology have introduced skin-interfaced biosensors capable of analyzing sweat and skin biomarkers,providing innovative solutions for diabetes diagnosis and monitoring.This review comprehensively discusses the current developments in noninvasive wearable biosensors,emphasizing simultaneous detection of biochemical biomarkers(such as glucose,cortisol,lactate,branched-chain amino acids,and cytokines)and physiological signals(including heart rate,blood pressure,and sweat rate)for accurate,personalized diabetes management.We explore innovations in multimodal sensor design,materials science,biorecognition elements,and integration techniques,highlighting the importance of advanced data analytics,artificial intelligence-driven predictive algorithms,and closed-loop therapeutic systems.Additionally,the review addresses ongoing challenges in biomarker validation,sensor stability,user compliance,data privacy,and regulatory considerations.A holistic,multimodal approach enabled by these next-generation wearable biosensors holds significant potential for improving patient outcomes and facilitating proactive healthcare interventions in diabetes management.
基金funded by the National Natural Science Foundation of China(Grant Nos.62322410,52272168,624B2135,61804047)the Fundamental Research Funds for the Central Universities(No.WK2030000103)。
文摘Human action recognition(HAR)is crucial for the development of efficient computer vision,where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces.However,the absence of interactions among versatile biomimicking functionalities within a single device,which was developed for specific vision tasks,restricts the computational capacity,practicality,and scalability of in-sensor vision computing.Here,we propose a bioinspired vision sensor composed of a Ga N/Al N-based ultrathin quantum-disks-in-nanowires(QD-NWs)array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.By simply tuning the applied bias voltage on each QD-NW-array-based pixel,we achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and HAR efficiency,respectively.Strikingly,the interplay and synergistic interaction of the two photoresponse modes within a single device markedly increased the HAR recognition accuracy from 51.4%to 81.4%owing to the integrated artificial vision system.The demonstration of an intelligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.
基金supported by the National Natural Science Foundation of China(NSFC 52175281,52475315)Youth Innovation Promotion Association of CAS(2021382)。
文摘The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision.While flexible pressure-sensing insoles show clinical potential,their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity(R^(2)>0.99 up to 1 MPa)in conventional designs.Inspired by the tactile sensing mechanism of human skin,where dermal stratification enables wide-range pressure adaptation and ion-channelregulated signaling maintains linear electrical responses,we developed a dual-mechanism flexible iontronic pressure sensor(FIPS).This innovative design synergistically combines two bioinspired components:interdigitated fabric microstructures enabling pressure-proportional contact area expansion(αP1/3)and iontronic film facilitating self-adaptive ion concentration modulation(αP^(2/3)),which together generate a linear capacitance-pressure response(CαP).The FIPS achieves breakthrough performance:242 kPa^(-1)sensitivity with 0.997linearity across 0-1 MPa,yielding a record linear sensing factor(LSF=242,000).The design is validated across various substrates and ionic materials,demonstrating its versatility.Finally,the FIPS-driven design enables a smart insole demonstrating 1.8%error in tibial load assessment during gait analysis,outperforming nonlinear counterparts(6.5%error)in early fracture-risk prediction.The biomimetic design framework establishes a universal approach for developing high-performance linear sensors,establishing generalized principles for medical-grade wearable devices.
基金This work was partially supported by a grant from the National Natural Science Foundation of China (No. 30370378)
文摘Objective: To investigate the role of collagen IV and PAS positive substancesecreted by tumor cells in vasculogenic mimicry (VM) and the effects of VM on tumor cells expressingVEGF. Methods: 158 cases of bi-direction differential malignant tumor specimens withparaffin-embedded were enrolled into our study and made tissue microarray which were dual-stainedwith CD31-PAS and stained with collagen IV. The difference of the areas and distribution withpattern surrounded by between CD31 and PAS positive respectively were identified via grid-counting,as well as the difference of VEGF expression with VE absent and present. Results: The basementmembrane of VM was both PAS and collagen IV positive. VEGF expression in the bi-directiondifferential malignant tumor was higher VM-absent than VM-present and the difference wasstatistically significance in malignant melanoma and alveolar rhabdomyosarcoma (P 【 0.05).Conclusion: PAS positive substance and collagen IV compose the wall of VE and VE could provide theoxygen and nutrition for tumor growth and progression.
基金financially supported by the National Key Research and Development Program of China(Grant No.2017YFC1404200)the Tianjin Key Program of Applied Foundation and Advanced-Tech Research,China(Grant No.18JCZDJC40200)+1 种基金the National High Technology Research and Development Program of China(863 Program,Grant No.2012AA051709)the National Natural Science Foundation of China(Grant No.51509183)
文摘The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation.
基金supported by the National Natural Science Foundation of China(61503407,61806219,61703426,61876189,61703412)the China Postdoctoral Science Foundation(2016 M602996)。
文摘The multi-agent system is the optimal solution to complex intelligent problems. In accordance with the game theory, the concept of loyalty is introduced to analyze the relationship between agents' individual income and global benefits and build the logical architecture of the multi-agent system. Besides, to verify the feasibility of the method, the cyclic neural network is optimized, the bi-directional coordination network is built as the training network for deep learning, and specific training scenes are simulated as the training background. After a certain number of training iterations, the model can learn simple strategies autonomously. Also,as the training time increases, the complexity of learning strategies rises gradually. Strategies such as obstacle avoidance, firepower distribution and collaborative cover are adopted to demonstrate the achievability of the model. The model is verified to be realizable by the examples of obstacle avoidance, fire distribution and cooperative cover. Under the same resource background, the model exhibits better convergence than other deep learning training networks, and it is not easy to fall into the local endless loop.Furthermore, the ability of the learning strategy is stronger than that of the training model based on rules, which is of great practical values.
文摘The constitutive promoter of cauliflower mosaic virus 35S (CaMV 35S) is a polar unidirectional promoter and is widely used in plant genetic engineering. In the present study, the unidirectional CaMV 35S promoter has been modified to a bi-directional promoter by fusing its minimal promoter element to the 5' end of CaMV 35S promoter in the opposite orientation. To qualitatively and quantitatively estimate its bi-directional transcriptional function and activity, two visible reporter genes, gusA (13-glucuronidase, GUS) and gfp (green fluorescent protein, GFP), were fused to the two ends of the promoter in bi-orientations ending with NOS terminator sequences, respectively. Stable expression of gusA and gfp genes in transgenic tobacco (Nicotiana tabacum L.) was visulized by histochemically staining for GUS and fluorescence microscopic observation under UV for GFP in transgenic plants. The expression of two reporter genes showed that the constructed bi-directional promoter did have the bi-directional transcriptional function in both expected orientations. The quantitative estimation of GUS and GFP were determined on a HITACHI F1000 Fluorescence Spectrophotometer with various wavelengths of excitation and emission. The GUS activity varied from g to 250 pmol 4-MU/min/mg protein and the GFP content varied from 0.9 to 1.8 μg/ mg protein in various lines of transgenic tobacco plants. Higher GUS activity generally coupled with lower GFP content, and vice versa.
文摘After analysing the disadvantages of the traditional residue hydrotreating-catalytic cracking combination process, RIPP has proposed a bi-directional combination technology integrating residue hydrotreating with catalytic cracking called RICP which does not further recycles the FCC heavy cycle oil (HCO) inside the FCC unit and delivers HCO to the residue hydrotreating unit as a diluting oil for the residue that is concurrently subjected to hydrotreating prior to being used as the FCC feed oil. The RICP technology can stimulate residue hydrotreating reactions through utilization of HCO along with an in- creased yield of FCC light distillate, resulting in enhanced petroleum utilization and economic benefits of the refinery.
基金supported by the National Key Scientific Instrument and Equipment Development Projects of China(Grant No.2012YQ040164)the National Natural Science Foundation of China(Grant Nos.61275127 and 91441130)+1 种基金the China Postdoctoral Science Foundation(Grant No.2014M560262)the Postdoctoral Fellowship in Heilongjiang Province,China(Grant No.LBH-Z14074)
文摘The one-dimensional (1D) spatial distributions of OH absolute concentration in methane/air laminar premixed flat flame under different equivalence ratios at atmospheric pressure are investigated by using bi-directional laser-induced flu- orescence (LIF) detection scheme combined with the direct absorption spectroscopy. The effective peak absorption cross section and the average temperature at a height of 2 mm above the burner are obtained by exciting absorption on the Q1(8) rotational line in the A2∑+ (Dt = 0) ←- X2∏ (v = 0) at 309.240 nm. The measured values are 1.86×10-15 cm2 and 1719 K, respectively. Spatial filtering and frequency filtering methods of reducing noise are used to deal with the experi- mental data, and the smoothing effects are also compared using the two methods. The spatial distribution regularities of OH concentration are obtained with the equivalence ratios ranging from 0.8 to 1.3. The spatial resolution of the measured result is 84μm. Finally, a comparison is made between the experimental result of this paper and other relevant study results.
基金supported by the NNSF of China(No.61177071, No.61250018)the Key Program of Shanghai Science and Technology Association (12dz1143000)
文摘In this paper, we propose and experimentally demonstrate a bi-directional indoor communication system based on visible light RGB-LED. Spectrally efficient modulation formats (QAM-OFDM), advanced digital signal processing, pre- and post- equalization are adopted to compensate the severe frequency response of indoor channel. In this system, we utilize red-green-blue Light emitting diodes (LEDs), of which each color can be used to carry different signals. For downlink, the low frequencies of each color are used while for uplink, the high frequencies are used. The overall data rate of downlink and uplink are 1.15-Gb/s and 300-Mb/s. The bit error ratios (BERs) for all channels after 0.7 m indoor delivery are below pre-forward- error-correction (pre-FEC) threshold of 3.8×10-3. To the best of our knowledge, this is the highest data rate in bi-directional visible light communication system.
基金Supported by the National Natural Science Foundation of China(50908048)the Priority Academic Program Development(PAPD)Project of JiangsuHigher Education Institutions
文摘Bi-directional static loading test adopting load cells is widely used around the world at present,with increase in diameter and length of deep foundations.In this paper,a new simple conversion method to predict the equivalent pile head load-settlement curve considering elastic shortening of deep foundation was put forward according to the load transfer mechanism.The proposed conversion method was applied to root caisson foundation in a bridge and to large diameter pipe piles in a sea wind power plant.Some new load cells,test procedure,and construction technology were adopted based on the applications to different deep foundations,which could enlarge the application scopes of bi-directional loading test.A new type of bi-directional loading test for pipe pile was conducted,in which the load cell was installed and loaded after the pipe pile with special connector has been set up.Unlike the conventional bi-directional loading test,the load cell can be reused and shows an evident economic benefit.
基金Project supported by the Natural Science Foundation of Guangdong Province of China(No.2018A030313258)。
文摘The bending and free vibrational behaviors of functionally graded(FG)cylindrical beams with radially and axially varying material inhomogeneities are investigated.Based on a high-order cylindrical beam model,where the shear deformation and rotary inertia are both considered,the two coupled governing differential motion equations for the deflection and rotation are established.The analytical bending solutions for various boundary conditions are derived.In the vibrational analysis of FG cylindrical beams,the two governing equations are firstly changed to a single equation by means of an auxiliary function,and then the vibration mode is expanded into shifted Chebyshev polynomials.Numerical examples are given to investigate the effects of the material gradient indices on the deflections,the stress distributions,and the eigenfrequencies of the cylindrical beams,respectively.By comparing the obtained numerical results with those obtained by the three-dimensional(3D)elasticity theory and the Timoshenko beam theory,the effectiveness of the present approach is verified.
基金supported by National Natural Science Foundation of China[Grant No.51575399]the National Key Research and Development Program of China[Grant No.2016YFB0101602].
文摘Stress-based topology optimization is one of the most concerns of structural optimization and receives much attention in a wide range of engineering designs.To solve the inherent issues of stress-based topology optimization,many schemes are added to the conventional bi-directional evolutionary structural optimization(BESO)method in the previous studies.However,these schemes degrade the generality of BESO and increase the computational cost.This study proposes an improved topology optimization method for the continuum structures considering stress minimization in the framework of the conventional BESO method.A global stress measure constructed by p-norm function is treated as the objective function.To stabilize the optimization process,both qp-relaxation and sensitivity weight scheme are introduced.Design variables are updated by the conventional BESO method.Several 2D and 3D examples are used to demonstrate the validity of the proposed method.The results show that the optimization process can be stabilized by qp-relaxation.The value of q and p are crucial to reasonable solutions.The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress field.The computational efficiency of the proposed method is higher than the previous methods because it keeps the generality of BESO and does not need additional schemes.
基金supported by Yunnan Provincial Education Department Science Foundation of China under Grant construction of the seventh batch of key engineering research centers in colleges and universities(Grant Project:Yunnan College and University Edge Computing Network Engineering Research Center).
文摘Sentiment analysis,commonly called opinion mining or emotion artificial intelligence(AI),employs biometrics,computational linguistics,nat-ural language processing,and text analysis to systematically identify,extract,measure,and investigate affective states and subjective data.Sentiment analy-sis algorithms include emotion lexicon,traditional machine learning,and deep learning.In the text sentiment analysis algorithm based on a neural network,multi-layer Bi-directional long short-term memory(LSTM)is widely used,but the parameter amount of this model is too huge.Hence,this paper proposes a Bi-directional LSTM with a trapezoidal structure model.The design of the trapezoidal structure is derived from classic neural networks,such as LeNet-5 and AlexNet.These classic models have trapezoidal-like structures,and these structures have achieved success in the field of deep learning.There are two benefits to using the Bi-directional LSTM with a trapezoidal structure.One is that compared with the single-layer configuration,using the of the multi-layer structure can better extract the high-dimensional features of the text.Another is that using the trapezoidal structure can reduce the model’s parameters.This paper introduces the Bi-directional LSTM with a trapezoidal structure model in detail and uses Stanford sentiment treebank 2(STS-2)for experiments.It can be seen from the experimental results that the trapezoidal structure model and the normal structure model have similar performances.However,the trapezoidal structure model parameters are 35.75%less than the normal structure model.