Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor mis...Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor miscibility of PA and ABS, developing an effective compatibilization strategy has been an urgent challenge to achieve prominent mechanical properties. In this study, we create a set of mechanically enhanced PA6/ABS blends using two multi-monomer melt-grafted compatibilizers, SEBSg-(MAH-co-St) and ABS-g-(MAH-co-St). The dispersed domain size is significantly decreased and meanwhile the unique "soft shell-encapsulating-hard core" structures form in the presence of compatibilizers. The optimum mechanical performances manifest an increase of 36% in tensile strength and an increase of 1300% in impact strength, compared with the neat PA6/ABS binary blend.展开更多
The rapid construction of artificial reservoirs in metropolises has promoted the emergence of city-river-reservoir systems worldwide.This study investigated the environmental behaviors and risks of heavy metals in the...The rapid construction of artificial reservoirs in metropolises has promoted the emergence of city-river-reservoir systems worldwide.This study investigated the environmental behaviors and risks of heavy metals in the aquatic environment of a typical system composed of main watersheds in Suzhou and Jinze Reservoir in Shanghai.Results shown that Mn,Zn and Cu were the dominant metals detected in multiple phases.Cd,Mn and Zn were mainly presented in exchangeable fraction and exhibited high bioavailability.Great proportion and high mobility of metals were found in suspended particulate matter(SPM),suggesting that SPM can greatly affect metal multi-phase distribution process.Spatially,city system(Ci S)exhibited more serious metal pollution and higher ecological risk than river system(Ri S)and reservoir system(Re S)owing to the diverse emission sources.Ci S and Re S were regarded as critical pollution source and sink,respectively,while Ri S was a vital transportation aisle.Microbial community in sediments exhibited evident spatial variation and obviously modified by exchangeable metals and nutrients.In particular,Bacteroidetes and Firmicutes presented significant positive correlations with most exchangeable metals.Risk assessment implied that As,Sb and Ni in water may pose potential carcinogenic risk to human health.Nevertheless,Re S was in a fairly safe state.Hg was the main risk contributor in SPM,while Cu,Zn,Ni and Sb showed moderate risk in sediments.Overall,Hg,Sb and Ci S were screened out as priority metals and system,respectively.More attention should be paid to these priority issues to promote the sustainable development of the watershed.展开更多
This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the ...This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the solid-solid phase transformation model. Taking an Fe-C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase (generated in liquid-solid phase transformation) in the solid-solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries.展开更多
Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This...Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.展开更多
A thermodynamically complete multi-phase equation of state(EOS)applicable to both dense and porous metals at wide ranges of temperature and pressure is constructed.A standard three-term decomposition of the Helmholtz ...A thermodynamically complete multi-phase equation of state(EOS)applicable to both dense and porous metals at wide ranges of temperature and pressure is constructed.A standard three-term decomposition of the Helmholtz free energy as a function of specific volume and temperature is presented,where the cold component models both compression and expansion states,the thermal ion component introduces the Debye approximation and melting entropy,and the thermal electron component employs the Thomas-Fermi-Kirzhnits(TFK)model.The porosity of materials is considered by introducing the dynamic porosity coefficientαand the constitutive P-αrelation,connecting the thermodynamic properties between dense and porous systems,allowing for an accurate description of the volume decrease caused by void collapse while maintaining the quasi-static thermodynamic properties of porous systems identical to the dense ones.These models enable the EOS applicable and robust at wide ranges of temperature,pressure and porosity.A systematic evaluation of the new EOS is conducted with aluminum(Al)as an example.300 K isotherm,shock Hugoniot,as well as melting curves of both dense and porous Al are calculated,which shows great agreements with experimental data and validates the effectiveness of the models and the accuracy of parameterizations.Notably,it is for the first time Hugoniot P-σcurves up to 10~6 GPa and shock melting behaviors of porous Al are derived from analytical EOS models,which predict much lower compression limit and shock melting temperatures than those of dense Al.展开更多
Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partition...Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partitioning tempering/QPT) have been investigated to obtain optimal microstructures,which are made up of martensite(hard phase),retained austenite(soft phase),and carbide or nano-bainite.Combination of hot stamping and newly developed heat treatments is discussed.展开更多
Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)...Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China.展开更多
在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异...在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异常值检测能力。本研究采用遥感海浪有效波高数据,构建双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)模型对有效波高进行预测,结合阈值方法进行异常检测,与3σ准则法、孤立森林模型法、 LSTM模型法以及VAE-LSTM模型法进行异常检测精度比较,探究基于Bi-LSTM的质量控制模型在遥感海浪数据异常值检测方面的能力。试验结果表明,Bi-LSTM质量控制模型具有良好的异常值检测效果,其精准率、召回率、 F1分数和运行时间分别为91%、 93%、 92和3.35 s,综合评价效果最佳,可有效对遥感海浪数据进行质量控制。展开更多
Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-k...Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-kappa B(NF-κB)pathway contributes to inflammation-induced peripheral nerve damage,affecting cell survival.Juan Bi Tong Luo(JBTL),a traditional Chinese medicine(TCM),has demonstrated favorable results in alleviating pain and numbness in patients with DPN;however,whether JBTL exerts its effect through the MAPK mediating NF-κB pathway remains unclear.Methods:This study investigated whether JBTL modulates apoptosis in DPN models and Schwann cells cultured in 100 mM of glucose by MAPK/NF-κB.Results:The JBTL altered inflammation,reduced peripheral nerve tissue damage,and improved cell survival rates by down-regulating MAPK/NF-κB.Conclusion:Our findings demonstrate that the effect of JBTL on DPN is likely mediated by suppressing inflammation induced by the MAPK/NF-κB pathway,thus providing evidence for the clinical efficacy of JBTL in treating DPN.展开更多
A new multi-phase active contour model is proposed for the image segmentation. It is a generalization of the C-V model with the following characteristics: (1) A key technique, called the technique of painting backg...A new multi-phase active contour model is proposed for the image segmentation. It is a generalization of the C-V model with the following characteristics: (1) A key technique, called the technique of painting background (TPBG), is developed to remove the information of the background, which blocks the detection of weak boundaries in the object; (2) The two-phase level set is applied multiple times for getting the multi-phase segmentation model (n-1 times for the n-phase model, n〉1); (3) A scaling-based method is introduced to improve the basic model. Experimental results show that the proposed model is effective for detecting weak boundaries.展开更多
A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other s...A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.展开更多
短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精...短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。展开更多
基金the National Natural Science Foundation of China (No. 51633003) for the financial support
文摘Polyamide/acrylonitrile-butadiene-styrene copolymer(PA/ABS) blends have drawn considerable attention from both academia and industry for their important applications in automotive and electronic areas. Due to poor miscibility of PA and ABS, developing an effective compatibilization strategy has been an urgent challenge to achieve prominent mechanical properties. In this study, we create a set of mechanically enhanced PA6/ABS blends using two multi-monomer melt-grafted compatibilizers, SEBSg-(MAH-co-St) and ABS-g-(MAH-co-St). The dispersed domain size is significantly decreased and meanwhile the unique "soft shell-encapsulating-hard core" structures form in the presence of compatibilizers. The optimum mechanical performances manifest an increase of 36% in tensile strength and an increase of 1300% in impact strength, compared with the neat PA6/ABS binary blend.
基金supported by the Scientific and Innovative Action Plan of Shanghai(CN)“One Belt One Road”International Cooperation Project(No.20260750400)the Singapore National Research Foundation(NRF)under its Campus for Research Excellence and Technological Enterprise(CREATE)program(E2S2-CREATE project ES-2:Detection,Assessment&Modelling of Emerging Contaminants in the Urban Environment)。
文摘The rapid construction of artificial reservoirs in metropolises has promoted the emergence of city-river-reservoir systems worldwide.This study investigated the environmental behaviors and risks of heavy metals in the aquatic environment of a typical system composed of main watersheds in Suzhou and Jinze Reservoir in Shanghai.Results shown that Mn,Zn and Cu were the dominant metals detected in multiple phases.Cd,Mn and Zn were mainly presented in exchangeable fraction and exhibited high bioavailability.Great proportion and high mobility of metals were found in suspended particulate matter(SPM),suggesting that SPM can greatly affect metal multi-phase distribution process.Spatially,city system(Ci S)exhibited more serious metal pollution and higher ecological risk than river system(Ri S)and reservoir system(Re S)owing to the diverse emission sources.Ci S and Re S were regarded as critical pollution source and sink,respectively,while Ri S was a vital transportation aisle.Microbial community in sediments exhibited evident spatial variation and obviously modified by exchangeable metals and nutrients.In particular,Bacteroidetes and Firmicutes presented significant positive correlations with most exchangeable metals.Risk assessment implied that As,Sb and Ni in water may pose potential carcinogenic risk to human health.Nevertheless,Re S was in a fairly safe state.Hg was the main risk contributor in SPM,while Cu,Zn,Ni and Sb showed moderate risk in sediments.Overall,Hg,Sb and Ci S were screened out as priority metals and system,respectively.More attention should be paid to these priority issues to promote the sustainable development of the watershed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51661020,11504149,and 11364024)
文摘This work establishes a temperature-controlled sequence function, and a new multi-phase-field model, for liquid- solid-solid multi-phase transformation by coupling the liquid-solid phase transformation model with the solid-solid phase transformation model. Taking an Fe-C alloy as an example, the continuous evolution of a multi-phase transformation is simulated by using this new model. In addition, the growth of grains affected by the grain orientation of the parent phase (generated in liquid-solid phase transformation) in the solid-solid phase transformation is studied. The results show that the morphology of ferrite grains which nucleate at the boundaries of the austenite grains is influenced by the orientation of the parent austenite grains. The growth rate of ferrite grains which nucleate at small-angle austenite grain boundaries is faster than those that nucleate at large-angle austenite grain boundaries. The difference of the growth rate of ferrites grains in different parent phase that nucleate at large-angle austenite grain boundaries, on both sides of the boundaries, is greater than that of ferrites nucleating at small-angle austenite grain boundaries.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.15308024)a grant from Research Centre for Carbon-Strategic Catalysis,The Hong Kong Polytechnic University(CE2X).
文摘Water electrolyzers play a crucial role in green hydrogen production.However,their efficiency and scalability are often compromised by bubble dynamics across various scales,from nanoscale to macroscale components.This review explores multi-scale modeling as a tool to visualize multi-phase flow and improve mass transport in water electrolyzers.At the nanoscale,molecular dynamics(MD)simulations reveal how electrode surface features and wettability influence nanobubble nucleation and stability.Moving to the mesoscale,models such as volume of fluid(VOF)and lattice Boltzmann method(LBM)shed light on bubble transport in porous transport layers(PTLs).These insights inform innovative designs,including gradient porosity and hydrophilic-hydrophobic patterning,aimed at minimizing gas saturation.At the macroscale,VOF simulations elucidate two-phase flow regimes within channels,showing how flow field geometry and wettability affect bubble discharging.Moreover,artificial intelligence(AI)-driven surrogate models expedite the optimization process,allowing for rapid exploration of structural parameters in channel-rib flow fields and porous flow field designs.By integrating these approaches,we can bridge theoretical insights with experimental validation,ultimately enhancing water electrolyzer performance,reducing costs,and advancing affordable,high-efficiency hydrogen production.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12205023,U2230401,12374056,U23A20537,11904027)。
文摘A thermodynamically complete multi-phase equation of state(EOS)applicable to both dense and porous metals at wide ranges of temperature and pressure is constructed.A standard three-term decomposition of the Helmholtz free energy as a function of specific volume and temperature is presented,where the cold component models both compression and expansion states,the thermal ion component introduces the Debye approximation and melting entropy,and the thermal electron component employs the Thomas-Fermi-Kirzhnits(TFK)model.The porosity of materials is considered by introducing the dynamic porosity coefficientαand the constitutive P-αrelation,connecting the thermodynamic properties between dense and porous systems,allowing for an accurate description of the volume decrease caused by void collapse while maintaining the quasi-static thermodynamic properties of porous systems identical to the dense ones.These models enable the EOS applicable and robust at wide ranges of temperature,pressure and porosity.A systematic evaluation of the new EOS is conducted with aluminum(Al)as an example.300 K isotherm,shock Hugoniot,as well as melting curves of both dense and porous Al are calculated,which shows great agreements with experimental data and validates the effectiveness of the models and the accuracy of parameterizations.Notably,it is for the first time Hugoniot P-σcurves up to 10~6 GPa and shock melting behaviors of porous Al are derived from analytical EOS models,which predict much lower compression limit and shock melting temperatures than those of dense Al.
文摘Optimization of microstructure for new generation advanced high strength steels(AHSS ) for automobiles was briefly reviewed.Two different heat treatments(quenching partitioning austempering/QPA and quenching partitioning tempering/QPT) have been investigated to obtain optimal microstructures,which are made up of martensite(hard phase),retained austenite(soft phase),and carbide or nano-bainite.Combination of hot stamping and newly developed heat treatments is discussed.
文摘Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China.
文摘在遥感海浪数据质量控制研究中,由于数据的复杂与不规则性,传统质量控制方法对海浪数据单点异常值的检测具有一定局限性。深度学习具有强大的特征学习能力,在解决非线性复杂问题方面具有一定优势,将其应用在数据质量控制领域可以提高异常值检测能力。本研究采用遥感海浪有效波高数据,构建双向长短期记忆网络(bi-directional long short term memory,Bi-LSTM)模型对有效波高进行预测,结合阈值方法进行异常检测,与3σ准则法、孤立森林模型法、 LSTM模型法以及VAE-LSTM模型法进行异常检测精度比较,探究基于Bi-LSTM的质量控制模型在遥感海浪数据异常值检测方面的能力。试验结果表明,Bi-LSTM质量控制模型具有良好的异常值检测效果,其精准率、召回率、 F1分数和运行时间分别为91%、 93%、 92和3.35 s,综合评价效果最佳,可有效对遥感海浪数据进行质量控制。
基金funded by grants from the Suzhou Gusu Health Talents Project(grant No.GSWS2024050 to Liu W)Natural Science Foundation Project of Nanjing University of Chinese Medicine(grant No.XZR2021043 to Liu W and grant No.XZR2023021 to Huang F)+1 种基金Suzhou Science Education Health Youth Project(grant No.KJXW2021046 to Liu W)Suzhou Major Disease Multi-center Clinical Research Project(grant No.DZXYJ202410 to Huang F).
文摘Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-kappa B(NF-κB)pathway contributes to inflammation-induced peripheral nerve damage,affecting cell survival.Juan Bi Tong Luo(JBTL),a traditional Chinese medicine(TCM),has demonstrated favorable results in alleviating pain and numbness in patients with DPN;however,whether JBTL exerts its effect through the MAPK mediating NF-κB pathway remains unclear.Methods:This study investigated whether JBTL modulates apoptosis in DPN models and Schwann cells cultured in 100 mM of glucose by MAPK/NF-κB.Results:The JBTL altered inflammation,reduced peripheral nerve tissue damage,and improved cell survival rates by down-regulating MAPK/NF-κB.Conclusion:Our findings demonstrate that the effect of JBTL on DPN is likely mediated by suppressing inflammation induced by the MAPK/NF-κB pathway,thus providing evidence for the clinical efficacy of JBTL in treating DPN.
文摘A new multi-phase active contour model is proposed for the image segmentation. It is a generalization of the C-V model with the following characteristics: (1) A key technique, called the technique of painting background (TPBG), is developed to remove the information of the background, which blocks the detection of weak boundaries in the object; (2) The two-phase level set is applied multiple times for getting the multi-phase segmentation model (n-1 times for the n-phase model, n〉1); (3) A scaling-based method is introduced to improve the basic model. Experimental results show that the proposed model is effective for detecting weak boundaries.
基金China Postdoctoral Science Foundation(No.2004035208)Jiangsu Communication Science Foundation (No.06Y36)
文摘A capacity model of multi-phase signalized intersections is derived by a stopping-line method. It is simplified with two normal situations: one situation involves one straight lane and one left-turn lane; the other situation involves two straight lanes and one left-turn lane. The results show that the capacity is mainly relative to signal cycle length, phase length, intersection layout and following time. With regard to the vehicles arrival rates, the optimal model is derived based on each phase's remaining time balance, and it is solved by Lagrange multipliers. Therefore, the calculation models of the optimal signal cycle length and phase lengths are derived and simplified. Compared to the existing models, the proposed model is more convenient and practical. Finally, a practical intersection is chosen and its signal cycles and phase lengths are calculated by the proposed model.
文摘短期预测在智能电网建设中扮演着重要角色,深刻影响电网发输变配用各个环节的智能化改造。短期预测一般基于系统实测数据,而传感器故障,数据传输错误等原因会导致数据质量下降,严重影响短期预测的精确性。为建立数据质量受损情况下的精确短期预测模型,提出了结合数据预处理和双向长短期记忆(bi-directional long short-term memory,Bi-LSTM)的短期预测框架Bi-LSTM-DP(bi-directional long short-term memory data preprocessing)。在Bi-LSTM-DP中,采集的数据首先通过均值填补缺失值,进而基于Savitzky-Golay滤波器对数据降噪,最后采用Bi-LSTM提取时间序列的信息,实现短期预测。为了评估所提方法的性能,文中使用实测的公开数据集分别预测风电发电量和负荷需求,与其他参考方法对比表明了所述方法的有效性和鲁棒性。