The diagram of Ag-Cu-Bi system was constructed from the investigation of 12 internal sec- tions by DTA heating as well as cooling curves in an atmosphere of dry N_2.The composi- tion of ternary eutectic point melting ...The diagram of Ag-Cu-Bi system was constructed from the investigation of 12 internal sec- tions by DTA heating as well as cooling curves in an atmosphere of dry N_2.The composi- tion of ternary eutectic point melting at 258℃ lies in Ag(5.0)-Cu(0.5)-Bi(94.5) at.-%.The liquiduses of Ag-Cu,Ag-Bi and Cu-Bi binaries were reinvestigated.展开更多
We present a comprehensive analysis of BI CVn,an eclipsing overcontact binary system.New BVR photometric observations,combined with available spectroscopic data,were analyzed simultaneously using the Wilson–Devinney ...We present a comprehensive analysis of BI CVn,an eclipsing overcontact binary system.New BVR photometric observations,combined with available spectroscopic data,were analyzed simultaneously using the Wilson–Devinney method to derive the orbital and physical parameters of the system.The resulting stellar parameters are M1=0.58±0.01M⊙,M2=1.42±0.02M⊙,R1=0.88±0.01R⊙,R2=1.31±0.01R⊙,with an orbital separation of a=2.80±0.01R⊙.Based on all available CCD times of minimum light,including both ground-based and T ESS observations,the(O-C)diagram of BI CVn was analyzed.T he orbital period exhibits a long-term decrease at a rate of-2.3239(±0.0001)×10-8 day yr-1,likely due to mass transfer from the more massive to the less massive component.Superimposed on this trend is a cyclic variation with a period of 56.84±0.08 yr,indicative of a light-travel time effect caused by a third body,whose estimated mass is 0.63±0.02M⊙.Using these derived parameters,we modeled the binary’s evolution through non-conservative processes with the Binary Star Evolution code.The evolutionary tracks of the components were examined in multiple parameter planes,leading to an estimated merger timescale of approximately 2.70 Gyr.展开更多
Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-k...Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-kappa B(NF-κB)pathway contributes to inflammation-induced peripheral nerve damage,affecting cell survival.Juan Bi Tong Luo(JBTL),a traditional Chinese medicine(TCM),has demonstrated favorable results in alleviating pain and numbness in patients with DPN;however,whether JBTL exerts its effect through the MAPK mediating NF-κB pathway remains unclear.Methods:This study investigated whether JBTL modulates apoptosis in DPN models and Schwann cells cultured in 100 mM of glucose by MAPK/NF-κB.Results:The JBTL altered inflammation,reduced peripheral nerve tissue damage,and improved cell survival rates by down-regulating MAPK/NF-κB.Conclusion:Our findings demonstrate that the effect of JBTL on DPN is likely mediated by suppressing inflammation induced by the MAPK/NF-κB pathway,thus providing evidence for the clinical efficacy of JBTL in treating DPN.展开更多
Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with ...Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with the increase of B2O3 content, the transition temperature Tg and softening temperature Tf of Bi2O3-ZnO-B2O3 system low-melting sealing glasses increase, which leads to the liquid phase precipitation temperature increasing and promotes the structure stability in the glass. With increasing the heat treatment temperature, a large number of liquid phases appear in samples and the sinter efficiency of the samples increases. The FT-IR spectra of the glasses show the presence of some bands that are assigned to vibrations of Bi--O bond from [BO3] pyramidal and [BiO6] octahedral units and B--O from [BO3] and [BO4] units. With the decrease of B203 content, the crystallization tendency of the glass increases. In glass samples Bl and B〉 crystallization starts at 460 ℃ and 540 ℃, respectively. Both of them precipitate Bi24B2O39 phases.展开更多
This paper reports a novel micro-blast driven manufacturing process for micro-forming of Aluminum foils. The micro-blast is realized by using a nanoenergetic material system comprising of Bi_2O_3 microrods and aluminu...This paper reports a novel micro-blast driven manufacturing process for micro-forming of Aluminum foils. The micro-blast is realized by using a nanoenergetic material system comprising of Bi_2O_3 microrods and aluminum particles. There is an enhanced need of forming of thin aluminum foil structures in small regions from point of view of drug packaging etc. The process developed caters to this need by using a single shot forming process using a micro-blast source. The micro-blast that is generated from an energetic composite system is made highly tunable by modulating the peak pressure generated through the blasting process and their impact in micro-forming of thin aluminum foils is observed through parametric studies. The engineering challenge involved in these experiments is to tune the blast pressure properties in order to address the forming of thin metal sheets with limiting boundary values as defined by the failure criteria. A variety of characterization techniques related to a thorough analysis of the synthesized material viz. X-ray diffraction(XRD), Scanning Electron Microscopy(SEM) etc, are used to tune the functional properties like gauge blast pressure etc, of material system. We have found a material system that can generate a maximum peak pressure of 73.8 MPa with pressurization rate of 2460 GPas^(-1) and that is able to accomplish micro-forming on thin metal foils(around 0.3 mm thickness). Experimental investigations demonstrate that tunabilty aspect of the energetic composites when exercised can enable variant processes such as embossing, coining, drilling etc. which may be of significant utility to drug packaging industries. A proper mathematical modeling of the forming process and critical process parameters therein have also been detailed.展开更多
The structures and dielectric properties of Ba6-3xNd8+2xTi18O54 system(x=2/3) doped with different contents of Bi2O3, whose final molecular formula is Ba6-3x(Nd1-yBiy)8+2xTi18O54 were investigated. It is indicat...The structures and dielectric properties of Ba6-3xNd8+2xTi18O54 system(x=2/3) doped with different contents of Bi2O3, whose final molecular formula is Ba6-3x(Nd1-yBiy)8+2xTi18O54 were investigated. It is indicated that the dielectric constant increases greatly whereas Q value(f0=4 GHz) decreases with the increase of Bi2O3 content. However, the temperature coefficient could be controlled below 0±30×10^-6/℃ in the experiment. These phenomena are related to the appearance of a new phase, Bi4Ti3O12, which has high dielectric constant. Also, that Bi^3+(0.13 nm) substitutes for Nd^3+(0.099 5 nm) will increase the unit cell volume, which will lead to the enlargement of the octahedron B site occupied by Ti^4+. So the spontaneous polarization of Ti^4+ ions will be strengthened. Besides, Bi^3+ will fill up some vacancies which Ba^2+ or Nd^3+ ions leave in two A1 sites and four A2 sites. More positive ions polarize, which also contributes to higher dielectric constant. The samples got with the optimium properties are sintered at 1 200 ℃ for 4 h, when y=0.25, ε≈110, Q≈5 400(f0=4 GHz), TCC=-4.7×10^-6/℃; When y=0.3, ε≈120, Q≈5 000(f0=4 GHz), TCC=-24×10^-6/℃.展开更多
In order to promote development of linear/branched block polyethylenes based on new catalytic systems,we synthesized a novel a.dimine nickel(Ⅱ)complex with isopropyl substituents on ortho-N-aryl and hydroxymethyl phe...In order to promote development of linear/branched block polyethylenes based on new catalytic systems,we synthesized a novel a.dimine nickel(Ⅱ)complex with isopropyl substituents on ortho-N-aryl and hydroxymethyl phenyl substituents on para-Naryl structures.The activity of a-dimine nickl(Ⅱ)catalyst was 3.02x10^(6)g-mol_(ni)^(-1)·h^(-1) at 70℃,and resultant polyethylene possessed 135/1000C branches.The linear/branched block polyethylenes were synthesized from ethylene polymerization catalyzed by the a-dimine nicke(Ⅱ)complex/bis(phenoxy-imine)zirconium in the presence of diethyI zinc.With the addition of ZnEtz(from 0 to 400),the melting peak of resultant polyethylene changed from a single melting peak to bimodal melting peaks.The molecular weights of resultant polyethylene ranging from 26.8 kg/mol to 17.1 kg/mol and PDI values varying gradually from 24.4 to 15.2 were obtained vla adjusting ZnEt;equiv.and molar ratio of two catalysts.In addition,the branching degree of the polyethylene increased from 13/1000C to 56/1000 with the increase of the proportion of a dimine nickel(Ⅱ)catalyst.Using this binary catalyst system,the reaction temperature of chain shutting polymerization can be carried out at 70℃,which is more conducive to industrial application.展开更多
Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2·NaCl at 650-750℃, using bismuth nitrate pentahydrate (Bi (NO3)3·H2O) and titanium butoxide (Ti...Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2·NaCl at 650-750℃, using bismuth nitrate pentahydrate (Bi (NO3)3·H2O) and titanium butoxide (Ti (OC4H9)4) as raw materials. The synthesis temperature of Bi4Ti3O12 platelets was decreased to 650℃ from 900-1100℃. The phase compositions and crystalline morphology of Bi4Ti3O12 platelets were investigated by XRD and SEM. The experimental results indicate that Bi4Ti3O12 platelets containing tetragonal and orthorhombic phase with the size of 1-3μm can be synthesized at 650℃ for 2 h, and the orthorhombic phase becomes the dominant phase at 750℃ for 5 h. The size and proportion of Bi4Ti3O12 platelets increase with the increment of the calcining temperature and holding time. The proportion of platelets increases to about ninety percent, and the platelets grow up to about 3-10μm at 750℃ for 5 h from 1-2μm at 650℃ for 2 h. This technical route provides a new low-temperature molten salt system for preparing platelets by molten salt methods.展开更多
In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the...In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise.展开更多
Among new low-melting-point glasses, bismuth ate glass is deemed to have the most potential as an environmentally friendly replacement for polluting Pb-containing glasses. Current studies of boro-bismuthate glasses fo...Among new low-melting-point glasses, bismuth ate glass is deemed to have the most potential as an environmentally friendly replacement for polluting Pb-containing glasses. Current studies of boro-bismuthate glasses focus on the structural influence of the additional oxide in the context of low-melting-point electronic sealing applications. In this study, the structure of quaternary Bi2O3- ZnO-B2O3-BaO glasses was investigated spectroscopic ally, with Fourier-transform-infrared (FT-IR) and Raman spectra recorded for glasses with different main oxide contents. Signals in the FT-IR are mainly observed around 500 cm﹣1, 720 cm﹣1, 840 cm﹣1, 980 - 1080 cm﹣1, and 1200 - 1500 cm﹣1, while the Raman scattering peaks are located at 130 cm﹣1, 390 cm﹣1, 575 cm﹣1, 920 cm﹣1, and 1250 cm﹣1. The glasses are mainly structured around [BO3] units and the numbers of [BiO6] and [BiO3] units increase with the Bi2O3 content increasing. Concurrently, the FT-IR absorption peaks associated with [BO4] units shift to lower wave numbers, indicating a loosening of the glass structure. However, as the B2O3 content is increased, the numbers of [BO3] and [BO4] units increase, while those of [BiO3] and [BiO6] units decrease, highlighting a densification of the glass structure. ZnO acts as a network modifier in these glasses.展开更多
文摘The diagram of Ag-Cu-Bi system was constructed from the investigation of 12 internal sec- tions by DTA heating as well as cooling curves in an atmosphere of dry N_2.The composi- tion of ternary eutectic point melting at 258℃ lies in Ag(5.0)-Cu(0.5)-Bi(94.5) at.-%.The liquiduses of Ag-Cu,Ag-Bi and Cu-Bi binaries were reinvestigated.
基金a project supported by the Scientific and Technological Research Council of Türkiye (TüB?TAK) under grant No.114F166
文摘We present a comprehensive analysis of BI CVn,an eclipsing overcontact binary system.New BVR photometric observations,combined with available spectroscopic data,were analyzed simultaneously using the Wilson–Devinney method to derive the orbital and physical parameters of the system.The resulting stellar parameters are M1=0.58±0.01M⊙,M2=1.42±0.02M⊙,R1=0.88±0.01R⊙,R2=1.31±0.01R⊙,with an orbital separation of a=2.80±0.01R⊙.Based on all available CCD times of minimum light,including both ground-based and T ESS observations,the(O-C)diagram of BI CVn was analyzed.T he orbital period exhibits a long-term decrease at a rate of-2.3239(±0.0001)×10-8 day yr-1,likely due to mass transfer from the more massive to the less massive component.Superimposed on this trend is a cyclic variation with a period of 56.84±0.08 yr,indicative of a light-travel time effect caused by a third body,whose estimated mass is 0.63±0.02M⊙.Using these derived parameters,we modeled the binary’s evolution through non-conservative processes with the Binary Star Evolution code.The evolutionary tracks of the components were examined in multiple parameter planes,leading to an estimated merger timescale of approximately 2.70 Gyr.
基金funded by grants from the Suzhou Gusu Health Talents Project(grant No.GSWS2024050 to Liu W)Natural Science Foundation Project of Nanjing University of Chinese Medicine(grant No.XZR2021043 to Liu W and grant No.XZR2023021 to Huang F)+1 种基金Suzhou Science Education Health Youth Project(grant No.KJXW2021046 to Liu W)Suzhou Major Disease Multi-center Clinical Research Project(grant No.DZXYJ202410 to Huang F).
文摘Background:Inflammation,caused by prolonged hyperglycemia,plays a substantially more important part in the progression of diabetic peripheral neuropathy(DPN).Notably,the MAPK pathway that mediates the Nuclear Factor-kappa B(NF-κB)pathway contributes to inflammation-induced peripheral nerve damage,affecting cell survival.Juan Bi Tong Luo(JBTL),a traditional Chinese medicine(TCM),has demonstrated favorable results in alleviating pain and numbness in patients with DPN;however,whether JBTL exerts its effect through the MAPK mediating NF-κB pathway remains unclear.Methods:This study investigated whether JBTL modulates apoptosis in DPN models and Schwann cells cultured in 100 mM of glucose by MAPK/NF-κB.Results:The JBTL altered inflammation,reduced peripheral nerve tissue damage,and improved cell survival rates by down-regulating MAPK/NF-κB.Conclusion:Our findings demonstrate that the effect of JBTL on DPN is likely mediated by suppressing inflammation induced by the MAPK/NF-κB pathway,thus providing evidence for the clinical efficacy of JBTL in treating DPN.
基金Project(50272043) supported by the National Natural Science Foundation of China
文摘Bi2O3-ZnO-B2O3 system glass is a kind of lead-free low melting sealing glasses. The structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass was investigated by DSC, FT-IR, XRD and SEM. The results show that with the increase of B2O3 content, the transition temperature Tg and softening temperature Tf of Bi2O3-ZnO-B2O3 system low-melting sealing glasses increase, which leads to the liquid phase precipitation temperature increasing and promotes the structure stability in the glass. With increasing the heat treatment temperature, a large number of liquid phases appear in samples and the sinter efficiency of the samples increases. The FT-IR spectra of the glasses show the presence of some bands that are assigned to vibrations of Bi--O bond from [BO3] pyramidal and [BiO6] octahedral units and B--O from [BO3] and [BO4] units. With the decrease of B203 content, the crystallization tendency of the glass increases. In glass samples Bl and B〉 crystallization starts at 460 ℃ and 540 ℃, respectively. Both of them precipitate Bi24B2O39 phases.
基金support provided by Boeing India to Indian Institute of Technology Kanpur,IndiaTEQIP funding from Government of India provided to G.B.Pant Institute of Engineering&Technology Pauri-Garhwal India
文摘This paper reports a novel micro-blast driven manufacturing process for micro-forming of Aluminum foils. The micro-blast is realized by using a nanoenergetic material system comprising of Bi_2O_3 microrods and aluminum particles. There is an enhanced need of forming of thin aluminum foil structures in small regions from point of view of drug packaging etc. The process developed caters to this need by using a single shot forming process using a micro-blast source. The micro-blast that is generated from an energetic composite system is made highly tunable by modulating the peak pressure generated through the blasting process and their impact in micro-forming of thin aluminum foils is observed through parametric studies. The engineering challenge involved in these experiments is to tune the blast pressure properties in order to address the forming of thin metal sheets with limiting boundary values as defined by the failure criteria. A variety of characterization techniques related to a thorough analysis of the synthesized material viz. X-ray diffraction(XRD), Scanning Electron Microscopy(SEM) etc, are used to tune the functional properties like gauge blast pressure etc, of material system. We have found a material system that can generate a maximum peak pressure of 73.8 MPa with pressurization rate of 2460 GPas^(-1) and that is able to accomplish micro-forming on thin metal foils(around 0.3 mm thickness). Experimental investigations demonstrate that tunabilty aspect of the energetic composites when exercised can enable variant processes such as embossing, coining, drilling etc. which may be of significant utility to drug packaging industries. A proper mathematical modeling of the forming process and critical process parameters therein have also been detailed.
基金the Natural Science Foundation of Tianjin(No.06YFJMJC01000)
文摘The structures and dielectric properties of Ba6-3xNd8+2xTi18O54 system(x=2/3) doped with different contents of Bi2O3, whose final molecular formula is Ba6-3x(Nd1-yBiy)8+2xTi18O54 were investigated. It is indicated that the dielectric constant increases greatly whereas Q value(f0=4 GHz) decreases with the increase of Bi2O3 content. However, the temperature coefficient could be controlled below 0±30×10^-6/℃ in the experiment. These phenomena are related to the appearance of a new phase, Bi4Ti3O12, which has high dielectric constant. Also, that Bi^3+(0.13 nm) substitutes for Nd^3+(0.099 5 nm) will increase the unit cell volume, which will lead to the enlargement of the octahedron B site occupied by Ti^4+. So the spontaneous polarization of Ti^4+ ions will be strengthened. Besides, Bi^3+ will fill up some vacancies which Ba^2+ or Nd^3+ ions leave in two A1 sites and four A2 sites. More positive ions polarize, which also contributes to higher dielectric constant. The samples got with the optimium properties are sintered at 1 200 ℃ for 4 h, when y=0.25, ε≈110, Q≈5 400(f0=4 GHz), TCC=-4.7×10^-6/℃; When y=0.3, ε≈120, Q≈5 000(f0=4 GHz), TCC=-24×10^-6/℃.
基金by the National Natural Science Foundation of China(Nos.21004017 and 21004043)the Natural Science Foundation of Hebei Provinee(No.B2015202049).
文摘In order to promote development of linear/branched block polyethylenes based on new catalytic systems,we synthesized a novel a.dimine nickel(Ⅱ)complex with isopropyl substituents on ortho-N-aryl and hydroxymethyl phenyl substituents on para-Naryl structures.The activity of a-dimine nickl(Ⅱ)catalyst was 3.02x10^(6)g-mol_(ni)^(-1)·h^(-1) at 70℃,and resultant polyethylene possessed 135/1000C branches.The linear/branched block polyethylenes were synthesized from ethylene polymerization catalyzed by the a-dimine nicke(Ⅱ)complex/bis(phenoxy-imine)zirconium in the presence of diethyI zinc.With the addition of ZnEtz(from 0 to 400),the melting peak of resultant polyethylene changed from a single melting peak to bimodal melting peaks.The molecular weights of resultant polyethylene ranging from 26.8 kg/mol to 17.1 kg/mol and PDI values varying gradually from 24.4 to 15.2 were obtained vla adjusting ZnEt;equiv.and molar ratio of two catalysts.In addition,the branching degree of the polyethylene increased from 13/1000C to 56/1000 with the increase of the proportion of a dimine nickel(Ⅱ)catalyst.Using this binary catalyst system,the reaction temperature of chain shutting polymerization can be carried out at 70℃,which is more conducive to industrial application.
文摘Bismuth titanate (Bi4Ti3O12) platelets were prepared by molten salt method in a new salt system of CaCl2·NaCl at 650-750℃, using bismuth nitrate pentahydrate (Bi (NO3)3·H2O) and titanium butoxide (Ti (OC4H9)4) as raw materials. The synthesis temperature of Bi4Ti3O12 platelets was decreased to 650℃ from 900-1100℃. The phase compositions and crystalline morphology of Bi4Ti3O12 platelets were investigated by XRD and SEM. The experimental results indicate that Bi4Ti3O12 platelets containing tetragonal and orthorhombic phase with the size of 1-3μm can be synthesized at 650℃ for 2 h, and the orthorhombic phase becomes the dominant phase at 750℃ for 5 h. The size and proportion of Bi4Ti3O12 platelets increase with the increment of the calcining temperature and holding time. The proportion of platelets increases to about ninety percent, and the platelets grow up to about 3-10μm at 750℃ for 5 h from 1-2μm at 650℃ for 2 h. This technical route provides a new low-temperature molten salt system for preparing platelets by molten salt methods.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10472091, 10502042 and 10332030) and Graduate Starting Seed Fund of Northwestern Polytechnical University (Grant No Z200655).
文摘In this paper, we apply a simple adaptive feedback control scheme to synchronize two bi-directionally coupled chaotic systems. Based on the invariance principle of differential equations, sufficient conditions for the global asymptotic synchronization between two bi-directionally coupled chaotic systems via an adaptive feedback controller are given. Unlike other control schemes for bi-directionally coupled systems, this scheme is very simple to implement in practice and need not consider coupling terms. As examples, the autonomous hyperchaotic Chen systems and the new nonautonomous 4D systems are illustrated. Numerical simulations show that the proposed method is effective and robust against the effect of weak noise.
文摘Among new low-melting-point glasses, bismuth ate glass is deemed to have the most potential as an environmentally friendly replacement for polluting Pb-containing glasses. Current studies of boro-bismuthate glasses focus on the structural influence of the additional oxide in the context of low-melting-point electronic sealing applications. In this study, the structure of quaternary Bi2O3- ZnO-B2O3-BaO glasses was investigated spectroscopic ally, with Fourier-transform-infrared (FT-IR) and Raman spectra recorded for glasses with different main oxide contents. Signals in the FT-IR are mainly observed around 500 cm﹣1, 720 cm﹣1, 840 cm﹣1, 980 - 1080 cm﹣1, and 1200 - 1500 cm﹣1, while the Raman scattering peaks are located at 130 cm﹣1, 390 cm﹣1, 575 cm﹣1, 920 cm﹣1, and 1250 cm﹣1. The glasses are mainly structured around [BO3] units and the numbers of [BiO6] and [BiO3] units increase with the Bi2O3 content increasing. Concurrently, the FT-IR absorption peaks associated with [BO4] units shift to lower wave numbers, indicating a loosening of the glass structure. However, as the B2O3 content is increased, the numbers of [BO3] and [BO4] units increase, while those of [BiO3] and [BiO6] units decrease, highlighting a densification of the glass structure. ZnO acts as a network modifier in these glasses.