Due to the widespread usage of social media in our recent daily lifestyles,sentiment analysis becomes an important field in pattern recognition and Natural Language Processing(NLP).In this field,users’feedback data o...Due to the widespread usage of social media in our recent daily lifestyles,sentiment analysis becomes an important field in pattern recognition and Natural Language Processing(NLP).In this field,users’feedback data on a specific issue are evaluated and analyzed.Detecting emotions within the text is therefore considered one of the important challenges of the current NLP research.Emotions have been widely studied in psychology and behavioral science as they are an integral part of the human nature.Emotions describe a state of mind of distinct behaviors,feelings,thoughts and experiences.The main objective of this paper is to propose a new model named BERT-CNN to detect emotions from text.This model is formed by a combination of the Bidirectional Encoder Representations from Transformer(BERT)and the Convolutional Neural networks(CNN)for textual classification.This model embraces the BERT to train the word semantic representation language model.According to the word context,the semantic vector is dynamically generated and then placed into the CNN to predict the output.Results of a comparative study proved that the BERT-CNN model overcomes the state-of-art baseline performance produced by different models in the literature using the semeval 2019 task3 dataset and ISEAR datasets.The BERTCNN model achieves an accuracy of 94.7%and an F1-score of 94%for semeval2019 task3 dataset and an accuracy of 75.8%and an F1-score of 76%for ISEAR dataset.展开更多
In response to the COVID-19,social media big data has played an important role in epidemic warning,tracking the source of infection,and public opinion monitoring,providing strong technical support for China’s epidemi...In response to the COVID-19,social media big data has played an important role in epidemic warning,tracking the source of infection,and public opinion monitoring,providing strong technical support for China’s epidemic prevention and control work.The paper used Sina Weibo posts related to COVID-19 hashtags as the data source,and built a BERT-CNN deep learning model to perform fine-grained and high-precision topic classificationon massive social media posts.Taking Shenzhen as a region of interest,we mined the“epidemic data bulletin”and“daily life impact”posts during the epidemic for spatial analysis.The results show that the confirmed communities and designated hospitals in Shenzhen as a whole present the characteristics of“sparse east and dense west”,and there is a strong positive spatial correlation between the number of confirmed cases and social media response.Specifically,Nanshan District,Futian District and Luohu District have more confirmed cases due to large population movements and dense transportation networks,and social media has responded more violently,and people’s lives have been greatly affected.However,Yantian District,Pingshan District and Dapeng New District showed opposite characteristics.The case study results further show that using deep learning methods to mine text information in social media is scientifically feasible for improving situational awareness and decision support during the COVID-19.展开更多
在对电商评论进行情感分析中,为了使提取的情感特征能够更多地捕获句子中的情感信息,提出了一种基于预训练的Bidirectional Encoder Representations from Transformers(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN网络模型。首先利...在对电商评论进行情感分析中,为了使提取的情感特征能够更多地捕获句子中的情感信息,提出了一种基于预训练的Bidirectional Encoder Representations from Transformers(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN网络模型。首先利用BERT结构表达句子语义作为文本向量,然后通过卷积神经网络抽取句子的局部特征,通过在有标签的京东某手机评论数据集上的实验,表明该方法在该领域具有良好的性能。展开更多
文摘Due to the widespread usage of social media in our recent daily lifestyles,sentiment analysis becomes an important field in pattern recognition and Natural Language Processing(NLP).In this field,users’feedback data on a specific issue are evaluated and analyzed.Detecting emotions within the text is therefore considered one of the important challenges of the current NLP research.Emotions have been widely studied in psychology and behavioral science as they are an integral part of the human nature.Emotions describe a state of mind of distinct behaviors,feelings,thoughts and experiences.The main objective of this paper is to propose a new model named BERT-CNN to detect emotions from text.This model is formed by a combination of the Bidirectional Encoder Representations from Transformer(BERT)and the Convolutional Neural networks(CNN)for textual classification.This model embraces the BERT to train the word semantic representation language model.According to the word context,the semantic vector is dynamically generated and then placed into the CNN to predict the output.Results of a comparative study proved that the BERT-CNN model overcomes the state-of-art baseline performance produced by different models in the literature using the semeval 2019 task3 dataset and ISEAR datasets.The BERTCNN model achieves an accuracy of 94.7%and an F1-score of 94%for semeval2019 task3 dataset and an accuracy of 75.8%and an F1-score of 76%for ISEAR dataset.
基金Science&Technology Department of Sichuan Province(No.21ZDYF2090)。
文摘In response to the COVID-19,social media big data has played an important role in epidemic warning,tracking the source of infection,and public opinion monitoring,providing strong technical support for China’s epidemic prevention and control work.The paper used Sina Weibo posts related to COVID-19 hashtags as the data source,and built a BERT-CNN deep learning model to perform fine-grained and high-precision topic classificationon massive social media posts.Taking Shenzhen as a region of interest,we mined the“epidemic data bulletin”and“daily life impact”posts during the epidemic for spatial analysis.The results show that the confirmed communities and designated hospitals in Shenzhen as a whole present the characteristics of“sparse east and dense west”,and there is a strong positive spatial correlation between the number of confirmed cases and social media response.Specifically,Nanshan District,Futian District and Luohu District have more confirmed cases due to large population movements and dense transportation networks,and social media has responded more violently,and people’s lives have been greatly affected.However,Yantian District,Pingshan District and Dapeng New District showed opposite characteristics.The case study results further show that using deep learning methods to mine text information in social media is scientifically feasible for improving situational awareness and decision support during the COVID-19.
文摘在对电商评论进行情感分析中,为了使提取的情感特征能够更多地捕获句子中的情感信息,提出了一种基于预训练的Bidirectional Encoder Representations from Transformers(BERT)网络与卷积神经网络(CNN)相结合的BERT-CNN网络模型。首先利用BERT结构表达句子语义作为文本向量,然后通过卷积神经网络抽取句子的局部特征,通过在有标签的京东某手机评论数据集上的实验,表明该方法在该领域具有良好的性能。