期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
1
作者 Zhuangzhuang Qu Zhihao Chen +9 位作者 Xiangyan Han Zhiyu Wang Zhuoxian Li Qianling Liu Wenjun Zhao Kenji Watanabe Takashi Taniguchi Zhi-Gang Cheng Zizhao Gan Jianming Lu 《Chinese Physics B》 2025年第3期177-181,共5页
Spin-orbit interaction(SOI)can be introduced by the proximity effect to modulate the electronic properties of graphene-based heterostructures.In this work,we stack trilayer WSe_(2) on Bernal tetralayer graphene to inv... Spin-orbit interaction(SOI)can be introduced by the proximity effect to modulate the electronic properties of graphene-based heterostructures.In this work,we stack trilayer WSe_(2) on Bernal tetralayer graphene to investigate the influence of SOI on the anomalous Hall effect(AHE).In this structurally asymmetric device,by comparing the magnitude of AHE at positive and negative displacement fields,we find that AHE is strongly enhanced by bringing electrons in proximity to the WSe_(2) layer.Meanwhile,the enhanced AHE signal persists up to 80 K,providing important routes for topological device applications at high temperatures. 展开更多
关键词 anomalous Hall effect proximity effect Bernal tetralayer graphene spin-orbit interaction
原文传递
Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
2
作者 黄妍 周涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期650-654,共5页
Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pair... Recent experimental findings have demonstrated the occurrence of superconductivity in Bernal bilayer graphene when induced by a magnetic field.In this study,we conduct a theoretical investigation of the potential pairing symmetry within this superconducting system.By developing a theoretical model,we primarily calculate the free energy of the system with p+ip-wave parallel spin pairing,p+ip-wave anti-parallel spin pairing and d+i d-wave pairing symmetry.Our results confirm that the magnetic field is indeed essential for generating the superconductivity.We discover that the p+ip-wave parallel spin pairing leads to a lower free energy for the system.The numerical calculations of the energy band structure,zero-energy spectral function and density of states for each of the three pairing symmetries under consideration show a strong consistency with the free energy results. 展开更多
关键词 SUPERCONDUCTIVITY magnetic field induction pairing symmetry Bernal bilayer graphene
原文传递
Lifshitz Transition Including Many-Body Effects in Bi-Layer Graphene and Change in Stacking Order
3
作者 Partha Goswami 《Graphene》 2013年第2期88-95,共8页
We consider the AB-(Bernal) stacking for the bi-layer graphene (BLG) system and assume that a perpendicular electric field is created by the external gates deposited on the BLG surface. In the basis (A1, B2, A2, B1) f... We consider the AB-(Bernal) stacking for the bi-layer graphene (BLG) system and assume that a perpendicular electric field is created by the external gates deposited on the BLG surface. In the basis (A1, B2, A2, B1) for the valleyKand the basis (B2, A1, B1, A2) for the valley K′, we show the occurrence of trigonal warping [1], that is, splitting of the energy bands or the density of states on the kx - ky plane into four pockets comprising of the central part and three legs due to a (skew) interlayer hopping between A1 and B2. The hopping between A1 - B2 leads to a concurrent velocity v3 in addition to the Fermi velocity vF. Our noteworthy outcome is that the above-mentioned topological change, referred to as the Lifshitz transition [2, 3], is entirely bias-tunable. Furthermore, the many-body effects, which is known to yield logarithmic renormalizations [4] in the band dispersions of monolayer graphene, is found to have significant effect on the bias-tunability of this transition. We also consider a variant of the system where the A atoms of the two layers are over each other and the B atoms of the layers are displaced with respect to each other. The Fermi energy density of statesfor zero bias corresponds to the inverted sombrero-like structure. The structure is found to get deformed due to the increase in the bias. 展开更多
关键词 AB-(Bernal) STACKING Trigonal WARPING Lifshitz Transition Logarithmic Renormalizations INVERTED Sombrero
暂未订购
MARTIN BERNAL'S BLACK ATHENA REVIEWED
4
作者 EdwinM.Yamauchi 《Journal of Ancient Civilizations》 1999年第0期145-152,共8页
关键词 NJ MARTIN BERNAL’S BLACK ATHENA REVIEWED
在线阅读 下载PDF
Asymmetric gaps of tetralayer graphene unveiled by thermodynamic characterization
5
作者 Zhuangzhuang Qu Zhuoxian Li +8 位作者 Boxi Li Lipeng Hou Xiangyan Han Qianling Liu Zhiyu Wang Kenji Watanabe Takashi Taniguchi Yanmeng Shi Jianming Lu 《Chinese Physics B》 2025年第11期223-228,共6页
Tetralayer graphene has shown several interesting properties such as tunable Lifshitz transitions,helical edge states,and high-temperature anomalous Hall effects.The band structure,which directly relates to these phen... Tetralayer graphene has shown several interesting properties such as tunable Lifshitz transitions,helical edge states,and high-temperature anomalous Hall effects.The band structure,which directly relates to these phenomena,has so far been predominantly determined by fitting Landau-level spectra.Here,by characterizing the electronic capacitance,we reveal unprecedented details of its band structure:the energy shift between the heavy-and light-mass band edges in the conduction band is much larger than that in the valence band.Their responses to displacement fields are also distinct:while the former increases monotonically and significantly,the latter first decreases and then increases slightly.Our results suggest that the interlayer interactions and hopping parameters are more complex than previously expected,calling for precise measurements of band structures in various multilayer van der Waals systems. 展开更多
关键词 quantum capacitance band structure Bernal tetralayer graphene chemical potential
原文传递
Stacking control in graphene-based materials: A promising method for fascinating physical properties 被引量:1
6
作者 Ji-Liang Zhang Guang-Cun Shan 《Frontiers of physics》 SCIE CSCD 2019年第2期45-46,共2页
Graphene, defined as a single atomic plane of graphite, is a semimetal with a small overlap between the valence and conduction bands. The stacking of graphene up to several atomic layers can lead to diverse physical p... Graphene, defined as a single atomic plane of graphite, is a semimetal with a small overlap between the valence and conduction bands. The stacking of graphene up to several atomic layers can lead to diverse physical properties, depending on the stacking method. Bi layer graphene is also a semimetal, adopting the AB-stacked (or Bernal-stacked) structure or the rare AA-stacked structure . Trilayer or few-layer graphene (FLG) can be semimetals or semiconductors, depending on whether they adopt Bernal (ABA) stacking or rhoinbohedral (ABC) stacking. 展开更多
关键词 graphene-based MATERIALS few-layer GRAPHENE (FLG) adopt BERNAL (ABA)
原文传递
非晶态合金的双层单元结构模型 被引量:2
7
作者 刘让苏 《科学通报》 1984年第19期1169-1171,共3页
一、引言 由于非晶态合金的各种物理化学性能都与微观结构有关,而目前的实验手段尚不能完全确定其微观结构,为要深入研究结构与性能的关系,就必须借助于理想化模型,为此,本文在Bernal、Finney等人工作的基础上,对于由液态淬火制备的非... 一、引言 由于非晶态合金的各种物理化学性能都与微观结构有关,而目前的实验手段尚不能完全确定其微观结构,为要深入研究结构与性能的关系,就必须借助于理想化模型,为此,本文在Bernal、Finney等人工作的基础上,对于由液态淬火制备的非晶态合金,提出可用双层单元结构模型来描述,并用此模型导出非晶态合金中类金属成分范围的上限约为30.47 at%,与已有实验结果甚为相符,又用此模型合理地解释了非晶态Fe-Si-B系合金中Tc极大值出现在类金属总成分约为25 at%左右等重要实验结果。 展开更多
关键词 BERNAL 双层单元结构模型 非晶态合金
原文传递
Self-organized metal-semiconductor epitaxial graphene layer on off-axis 4H-SiC(0001)
8
作者 Debora Pierucci Haikel Sediri +8 位作者 Mahdi Hajlaoui Emilio Velez-Fort Yannick J. Dappe Mathieu G. Silly Rachid Belkhou Abhay Shukla Fausto Sirotti Noelle Gogneau Abdelkarim Ouerghi 《Nano Research》 SCIE EI CAS CSCD 2015年第3期1026-1037,共12页
The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and d... The remarkable properties of graphene have shown promise for new perspectives in future electronics, notably for nanometer scale devices. Here we grow graphene epitaxially on an off-axis 4H-SiC(0001) substrate and demonstrate the formation of periodic arrangement of monolayer graphene on planar (0001) terraces and Bernal bilayer graphene on (1120) nanofacets of SiC. We investigate these lateral superlattices using Raman spectroscopy, atomic force microscopy/ electrostatic force microscopy (AFM/EFM) and X-ray and angle resolved photoemission spectroscopy (XPS/ARPES). The correlation of EFM and ARPES reveals the appearance of permanent electronic band gaps in AB-stacked bilayer graphene on (1120) SiC nanofacets of 150 meV. This feature is confirmed by density functional theory (DFT) calculations. The charge transfer between the substrate and graphene bilayer results in an asymmetric charge distribution between the top and the bottom graphene layers opening an energy gap. This surface organization can be thus defined as self-organized metal-semiconductor graphene. 展开更多
关键词 epitaxial graphene layer monolayer BILAYER band gap opening Bernal stacking off-axis silicon carbide electronic properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部