A novel benzene-ring engineered 1D/2D WO_(3)/g-C_(3)N_(4)S-scheme photocatalyst(BCNW)was rationally de-signed and successfully synthesized by the electrostatic self-assembly method.Experimental and Density Functional ...A novel benzene-ring engineered 1D/2D WO_(3)/g-C_(3)N_(4)S-scheme photocatalyst(BCNW)was rationally de-signed and successfully synthesized by the electrostatic self-assembly method.Experimental and Density Functional Theory results reveal that the integration of molecular benzene-ring in the framework of g-C_(3)N_(4)can not only narrow its bandgap and accelerate charge separation by forming a mid-state at the top of its valence band but more importantly open up a new additional bridge for speeding up the interfacial S-scheme charge transfer in BCNW.Benefitting from those multiple positive effects of benzene-ring inte-gration,as expected,BCNW S-scheme photocatalysts show superior photocatalytic H_(2)-production activity and reach 2971μmol h^(-1)g^(-1)under visible-light illumination,which is 3.35 times WO_(3)/g-C_(3)N_(4)S-scheme photocatalyst without benzene-ring integration.This work supplies an innovative strategy for the design of a high-efficiency S-scheme photocatalytic system by constructing a facile and additional molecular charge transfer channel at the interface.展开更多
基金This work was financially supported by National Natural Sci-ence Foundation(No.52000044)the Outstanding Youth Project of Guangdong Natural Science Foundation(No.2021B1515020051)+3 种基金the Natural Science Foundation of Guangdong Province(Nos.2021A1515012610,2019050001)Special Fund Project of Science and Technology Application in Guangdong(No.2017B020240002)National 111 project,Department of Science and Technology of Guangdong(Nos.2019JC01L203,2020B0909030004)Science and Technology Program of Guangzhou(No.202102010418).
文摘A novel benzene-ring engineered 1D/2D WO_(3)/g-C_(3)N_(4)S-scheme photocatalyst(BCNW)was rationally de-signed and successfully synthesized by the electrostatic self-assembly method.Experimental and Density Functional Theory results reveal that the integration of molecular benzene-ring in the framework of g-C_(3)N_(4)can not only narrow its bandgap and accelerate charge separation by forming a mid-state at the top of its valence band but more importantly open up a new additional bridge for speeding up the interfacial S-scheme charge transfer in BCNW.Benefitting from those multiple positive effects of benzene-ring inte-gration,as expected,BCNW S-scheme photocatalysts show superior photocatalytic H_(2)-production activity and reach 2971μmol h^(-1)g^(-1)under visible-light illumination,which is 3.35 times WO_(3)/g-C_(3)N_(4)S-scheme photocatalyst without benzene-ring integration.This work supplies an innovative strategy for the design of a high-efficiency S-scheme photocatalytic system by constructing a facile and additional molecular charge transfer channel at the interface.