期刊文献+
共找到203篇文章
< 1 2 11 >
每页显示 20 50 100
Analyzing structural changes induced by gas migration in heterogeneous pellet/powder bentonite mixtures through X-ray computed micro-tomography
1
作者 Mohammed Zaidi Nadia Mokni +1 位作者 Magdalena Dymitrowska Kui Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3198-3212,共15页
Understanding the mechanisms of gas transport and the resulting preferential pathways formation through bentonite-based barriers is essential for their performance evaluation.In this experimental study,gas migration w... Understanding the mechanisms of gas transport and the resulting preferential pathways formation through bentonite-based barriers is essential for their performance evaluation.In this experimental study,gas migration within a heterogenous mixture of MX80 bentonite pellets and powder with a ratio of 80/20 in dry mass was investigated.A novel X-ray transparent constant volume cell has been developed to assess the effect of gas pressure,material heterogeneities,and water vapor gas saturation on breakthrough pressure and gas pathways.The new cell allows to perform high-resolution X-ray computed micro-tomography(X-ray μCT)scans to track microstructural changes during different phases of saturation and gas injection.Experimental results showed that the gas breakthrough occurred when the pressure was raised to 3 MPa.This is slightly higher than the expected swelling pressure(2.9 MPa)of the bentonite sample.Each gas injection was followed by a long resaturation phase restoring material homogeneity at μCT resolution scale(16 mm).However,the elapsed time needed for gas to breakthrough at 3 MPa diminished at each subsequent injection test.X-ray μCT results also revealed the opening of the specimen/cell wall interface during gas passage.This opening expanded as the injection pressure increased.The gas flow along the interface was associated with the development of dilatant pathways inside the sample,although they did not reach the outlet surface.It was observed that the water vapor gas saturation had no effect on the breakthrough pressure.These findings enhance the understanding of the complex mechanisms underlying microstructural evolution and gas pathway development within the highly heterogeneous mixture.The experimental outcomes highlight the effectiveness of X-ray μCT to improve quality protocols for engineering design and safety assessments of engineered barriers. 展开更多
关键词 bentonite pellet-powder mixture Gas migration Breakthrough pressure Gas pathways X-ray computed tomography Heterogenous bentonite mixture
在线阅读 下载PDF
Comparative study of hydro-mechanical behaviors of compacted bentonite powder and granular bentonite
2
作者 Zhao Zhang Wen-Sheng Geng +4 位作者 Wei-Min Ye Yong He Wei Su Qiong Wang Yong-Gui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1757-1769,共13页
In the deep geological disposal repository of high-level radioactive waste,buffer/backfill materials typically consist of compacted bentonite block and granular bentonite.As these materials undergo a long-term hydrati... In the deep geological disposal repository of high-level radioactive waste,buffer/backfill materials typically consist of compacted bentonite block and granular bentonite.As these materials undergo a long-term hydration,it is anticipated that the two forms of bentonite materials(i.e.compacted bentonite powder(CBP)and granular bentonite(GB))are expected to exhibit differing hydro-mechanical behaviors due to the differences in their structures.This work aims to investigate the differences in swelling pressure and compressibility through a series of swelling pressure tests,compression tests and mercury intrusion porosimetry(MIP)tests.The experimental results demonstrated that swelling pressure curves of the CBP specimens showed higher first peak values and more pronounced collapse than those of the GB specimens at a given dry density,regardless of vapor-water hydration or liquid-water hydration.The final swelling pressures of the two materials were similar at the same dry density,suggesting an independent correlation between swelling pressure and dry density.At the high suction range,the compression curves exhibited an obvious bi-linear pattern for the CBP specimens and a significant nonlinearity for the GB specimens.Meanwhile,the CBP specimens presented higher pre-consolidation pressures and larger compression indices than the GB specimens at a given suction.As suction decreased,the compression curves of the two materials gradually approached each other and their differences were reduced accordingly.After reaching saturation,a good consistency between them was observed whether for final swelling pressure or compressibility.Pore structure analysis revealed that the two materials both presented an initially double structure,and their differences were primarily manifested at the macrostructural level.Eventually,the differences in swelling pressure or compression curves of the two materials were well interpreted by combining microstructural evolutions. 展开更多
关键词 bentonite powder Granular bentonite Swelling pressure Compression Hydro-mechanical behaviors
在线阅读 下载PDF
Performance characteristics of EZhou bentonite of Hubei province and its modification 被引量:1
3
作者 Long Wei Fan Zitian Hu Xueting 《China Foundry》 SCIE CAS 2009年第4期308-313,共6页
Both the chemical compositions and performance characteristics of the bentonite raw ores in Ezhou area of Hubei province and Honghuoshan area of Liaoning of these two kinds of bentonites were tested before and provinc... Both the chemical compositions and performance characteristics of the bentonite raw ores in Ezhou area of Hubei province and Honghuoshan area of Liaoning of these two kinds of bentonites were tested before and province were compared and analyzed. The properties after Na^+- and Li^+-modification. The results show that the Ezhou bentonite ore possesses higher montmorillonite content than the Honghuoshan bentonite ore, but the Ezhou Na-bentonite has weaker castability (e.g. wet compression strength and hot wet tensile strength) than the Honghuoshan Na-bentonite, while the performance of Ezhou Li-bentonite, such as colloid index, swelling value, swelling volume and mould coating performance, is equivalent to that of the Honghuoshan Na-bentonite. 展开更多
关键词 Ezhou bentonite Honghuoshan bentonite NA-bentonite Li-bentonite performance characteristic
在线阅读 下载PDF
Impact of Bentonite and Humic Acid on the Growth and Flowering of Catharanthus roseus L. in Sandy Soil 被引量:1
4
作者 Raad Farhan Shahad Mohammed Malik Hamid 《Journal of Environmental & Earth Sciences》 2025年第1期157-166,共10页
Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of th... Bentonite is a very useful material for improving soil properties,which enhances the ability of plants to grow and produce in different conditions.The experiment was carried out in an agricultural nursery in one of the areas of the City of Diwaniyah,in a house covered with green netting,with a shade rate of 25%,to study the effect of bentonite and humic acid on the growth and flowering of a Catharanthus roseus L.plant in sandy soil.The experiment included two factors:the first factor was bentonite clay,and the second factor was humic acid.Using a randomized complete block design(R.C.B.D)with three replications,data were analyzed using the analysis of variance(ANOVA)method,and comparison was made according to the least significant difference(L.S.D)test at a probability level of 0.05.The experiment consisted of adding bentonite clay at 0,2,6,and 8 g L-1,humic acid at 0,0.5,1,and 10 g L-1.The results showed that adding bentonite clay and humic acid to sandy soil can have a significant positive effect on the growth and flowering of the Catharanthus roseus plant grown in poor sandy soil conditions.Bentonite,clay and humic acid were added at concentrations of 8 and 10 g L-1,which led to an increase in plant height and number of leaves and leaf area.They reached 30.07,23.84 cm2,76.62,63.42 cm2 for leaf-1 and 24.73,20.22 cm2 for leaf-1,respectively.The results also showed an increase in the content of nitrogen(N),phosphorus(P),and potassium(K)in leaves by 2.27,1.92,1.99%and 1.51,1.22,1.77%.This also led to an increase in chlorophyll pigment and anthocyanin at the highest concentration and gave the highest value.Therefore,adding bentonite and humic acid together gave the highest values in vegetative and chemical characteristics,compared to treatments without addition. 展开更多
关键词 bentonite Humic Acid Sandy Soil Catharanthus roseus L.
在线阅读 下载PDF
Bentonite supported cobalt catalyst prepared by blending method for the catalytic oxidation of desulfurization by-product sulfite:Catalytic performance and mechanism
5
作者 Fanbo Zeng Jing Zhu +7 位作者 Feng Liu Guoyu Zhang Weirun Li Wenye Li Zhiwei Shang Hong You Shuxiao Wang Zhipeng Li 《Journal of Environmental Sciences》 2025年第10期584-595,共12页
Wet flue gas desulfurization(WFGD)could effectively reduce sulfur dioxide emission.However,magnesium sulfite(MgSO_(3)),a by-product of desulfurization,was easy to result in secondary pollution.In this study,the solid ... Wet flue gas desulfurization(WFGD)could effectively reduce sulfur dioxide emission.However,magnesium sulfite(MgSO_(3)),a by-product of desulfurization,was easy to result in secondary pollution.In this study,the solid catalyst Co-Bent(bentonite supported cobalt)was prepared by blending method for MgSO_(3) oxidation with bentonite as the carrier and cobalt as the active component.At the calcination temperature of 550℃ and the Co loading level of 3 wt.%,the catalyst showed excellent catalytic performance for the oxidation of high concentration MgSO_(3) slurry,and the oxidation rate of MgSO_(3) was 0.13 mol/(L·h).The research indicated that the active component was uniformly distributed within porous structure of the catalyst as Co_(3)O_(4),which facilitated the oxidation of SO_(3)^(2-) catalyzed by Co_(3)O_(4).Kinetic researches indicated the oxidation rate of MgSO_(3) was influenced by the catalyst dosage,the reaction temperature,the solution pH,the airflow rate,and the SO_(3)^(2-) concentration.Additionally,after recycling experiments,the regenerated catalyst retained its high catalytic performance for the MgSO_(3) oxidation.The reaction mechanism for the catalytic oxidation of MgSO_(3) by Co-Bent catalyst was also proposed.The generation of active free radicals(OH·,SO_(4)^(-)·,SO_(3)^(-)·,SO_(5)^(-)·)accelerated the MgSO_(3) oxidation.These results provide theoretical support for the treatment of MgSO_(3) and the development of durable catalyst. 展开更多
关键词 Magnesium sulfite bentonite Blending method Solid catalyst Catalytic oxidation Reaction mechanism
原文传递
Modelling gas diffusion in compacted water-saturated Na-bentonite considering multi-porosity effects
6
作者 Linyong Cui Min Chen +2 位作者 Zirui Cheng Shakil A.Masum Yanan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第11期7410-7419,共10页
Predicting the gas diffusion coefficient of water-saturated Na-bentonite is crucial for the overall performance of the geological repository for isolating high-level radioactive waste(HLW).In this study,a conceptual m... Predicting the gas diffusion coefficient of water-saturated Na-bentonite is crucial for the overall performance of the geological repository for isolating high-level radioactive waste(HLW).In this study,a conceptual model that incorporates a multi-porosity system was proposed,dividing the pore space into free water pores,interlayer water pores,and diffuse double layer(DDL)water pores,to describe the molecular diffusion behaviour of the dissolved gas in saturated bentonite.In this model,gas diffusion in these three porosities is considered as independent and parallel processes.The apparent gas diffusion coefficient is quantified by applying weighted approximations that consider the specific porosity,tortuosity factor,and constrictivity factor within each porosity domain.For verification,experimental data from gas diffusion tests on saturated MX-80 and Kunipia-F bentonite specimens across a wide range of dry densities were utilized.The proposed model could successfully capture the overall trend of the apparent gas diffusion coefficient for bentonite materials across the partial dry density of montmorillonite ranging from 900 kg/m^(3)to 1820 kg/m^(3),by employing only one fitting parameter of the scaling factor.When the partial dry density of montmorillonite decreased to 800 kg/m^(3),the proposed model shows an underestimation of the apparent gas diffusion coefficient due to possible changes of the tortuosity factor.Model predictions indicate that gas diffusion in saturated bentonite is primarily controlled by the free pore domain,with minimal contributions from DDL pores.Despite being the dominant pore type,interlayer pores contribute limitedly to total Da/Dw values due to significant constrictivity effects. 展开更多
关键词 Gas diffusion Saturated bentonite MONTMORILLONITE Interlayer pore TORTUOSITY
在线阅读 下载PDF
Elevated temperature effects on swelling pressure of compacted bentonite
7
作者 Linhua He Majid Sedighi +2 位作者 Mojgan Hadi Mosleh Andrey Jivkov Jiangfeng Liu 《Deep Underground Science and Engineering》 2025年第4期699-708,共10页
Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonitebased buffer,backfill,and sealing systems in deep geological dispos... Understanding the effects of temperature on the hydro-mechanical behavior of compacted bentonite is important for performance assessments of bentonitebased buffer,backfill,and sealing systems in deep geological disposal of high-level radioactive wastes.Motivated by such applications,most past experimental studies were focused on highly compacted and high-quality bentonite.Such degrees of dry densities may not be economically or technically feasible for other emerging applications,including as an alternative material to cement in plugging and abandonment of wells.A bespoke high-pressure high-temperature constant rate of strain(CRS)apparatus was developed for the work reported here to conduct a series of tests for evaluating the hydro-mechanical response of compacted bentonite to elevated temperatures.Experiments were performed with bentonite specimens with high impurity contents at a range of dry densities(1.1,1.4,and 1.7 Mg/m^(3))and temperatures between 20 and 80℃.The results show that temperature increase leads to the decrease of swelling pressure for all studied densities.Larger reductions of swelling pressure were observed with increasing dry densities,suggesting the possibility of a larger exchange of pore water in the microstructure system of the clay.The transfer of water from micropores to macropores at elevated temperatures is shown to be a key controlling process at high-density compacted bentonite by which temperature affects the swelling pressure and hydraulic conductivity. 展开更多
关键词 compacted bentonite nuclear waste swelling pressure TEMPERATURE well plugging
原文传递
Visualization of hydraulic fracturing in compacted bentonite:The roles of dry density,water content,and pressurization rate
8
作者 Kun-Peng Li Yong-Gui Chen +2 位作者 Yu-Cheng Li Wei-Min Ye Qiong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5906-5921,共16页
Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydrau... Deep geological repository is typically situated at depths ranging from several hundred to 1000 m below ground,making bentonite engineered barrier potentially vulnerable to high water pressure and even inducing hydraulic fracturing.This study conducted injection tests on compacted GMZ(Gaomiaozi)bentonite with a self-developed visualization set-up.The objective was to unveil the roles of dry density,water content,and pressurization rate in hydraulic fracturing from the perspective of fracturing macromorphological dynamics and breakthrough characteristics.Moreover,the relationships between breakthrough characteristics and microstructure were examined by MIP(mercury intrusion porosimetry)analysis.Results showed that the fracturing dynamics were characterized by three stages:hydration,cracking,and fracturing stages.Compared to water content and pressurization rate,dry density exerted more pronounced effects on these stages.Increasing dry density can lead to an expansion of circular hydration zone,a more complex cracking network,and a change in fracturing patterns from long and clear to short and fuzzy.In terms of breakthrough characteristics,the breakthrough pressure was positively correlated with dry density and negatively correlated with water content.Interestingly,there is a good and unique logarithmic correlation between the breakthrough pressure and the ratio eM/em of inter-aggregate void ratio and intra-aggregate void ratio,regardless of dry density and water content.Within a certain range(i.e.200-50 kPa/min),breakthrough pressure showed slight dependency on pressurization rate.Nevertheless,an extremely low pressurization rate of 20 kPa/min caused a transition for the specimen from quasi-brittle to plastic state owning to more water infiltration,thereby hindering fracture initiation and propagation. 展开更多
关键词 Deep geological repository Compacted bentonite Hydraulic fracturing Fracturing dynamics Breakthrough characteristics
在线阅读 下载PDF
Organic-Inorganic Hydrogel Strain Sensors Based on Methacryloyl Ethoxy Trimethyl Ammonium Chloride and Bentonite
9
作者 Xiao-Ya Wang Jing-Jing Bai +1 位作者 Tian-Jia Yang Xu-Dong Yu 《Chinese Journal of Polymer Science》 2025年第10期1904-1916,共13页
Flexible wearable electronic devices based on hydrogels have immense potential in a wide range of applications.However,many existing strain sensors suffer from significant limitations including poor mechanical propert... Flexible wearable electronic devices based on hydrogels have immense potential in a wide range of applications.However,many existing strain sensors suffer from significant limitations including poor mechanical properties,low adhesion,and insufficient conductivity.To address these challenges,this study successfully developed an organic-inorganic double-network conductive hydrogel using acrylic-modified bentonite (AABT) as a key component.The incorporation of AABT significantly enhanced the mechanical properties of the ATHG@LiCl hydrogel,achieving an impressive stretchability of 4000% and tensile strength of 250 kPa.Moreover,it improved the electrical conductivity of the hydrogel to a maximum of 1.53 mS/cm.The catechol structure of tannic acid (TA) further augmented the adhesive properties of the ATHG@LiCl hydrogel toward various substrates such as copper,iron,glass,plastic,wood,and pigskin.The addition of lithium chloride (LiCl) and dimethyl sulfoxide(DMSO) endowed the hydrogel with exceptional freezing resistance and flexibility,even at low temperatures of-20℃.Remarkably,the hydrogel maintained a conductivity of 0.53 mS/cm under these conditions,surpassing the performance of many other reported hydrogels.Furthermore,the ATHG@LiCl hydrogel demonstrated outstanding characteristics,such as high sensitivity (gauge factor GF=4.50),excellent transparency (90%),and reliable strain-sensing capabilities,indicating that the ATHG@LiCl hydrogel is a highly promising candidate for flexible wearable soft materials,offering significant advancements in both functionality and performance. 展开更多
关键词 Acrylic bentonite Organic-inorganic hydrogel ADHESION Strain sensor
原文传递
Effects of water content on the corrosion behavior of NiCu low alloy steel embedded in compacted GMZ bentonite
10
作者 Madhusudan Dhakal Xin Wei +6 位作者 Hari Bhakta Oli Nan Chen Yupeng Sun Durga Bhakta Pokharel Qiying Ren Junhua Dong Wei Ke 《Journal of Materials Science & Technology》 2025年第19期94-110,共17页
Buffer material and metal disposal containers are the key engineering barriers in the geological disposal of high-level radioactive waste.The durability of disposal containers largely depends on the water con-tent in ... Buffer material and metal disposal containers are the key engineering barriers in the geological disposal of high-level radioactive waste.The durability of disposal containers largely depends on the water con-tent in buffer material.This work focused on investigating the corrosion evolution of NiCu low alloy steel in compacted GMZ bentonite with different water contents for 270 d by using weight loss,electrochemi-cal measurements,and various methods for analyzing corrosion products.As the water content increased from 13%to 20%,the water in the bentonite transformed from an unsaturated to a critical saturated state,and the corrosion rate of NiCu steel clearly increased.In these two systems,the oxygen could mi-grate to the thin liquid film on the steel surface through the air pores in the bentonite in the gas phase and undergo cathodic reduction.Meanwhile,it oxidized the ferrous hydrolysis products into ferric corro-sion products and formed a rust layer,which could block the diffusion of oxygen.At that moment,the cathodic process of NiCu steel corrosion changed to rust reduction.When the water content continually increased to 30%and 40%,the compacted bentonite was in a saturation state,and the corrosion rate of NiCu steel was significantly decreased.This was because most pores among the bentonite particles were occupied by a large amount of free water,which hindered the diffusion of oxygen and inhibited its cathodic reduction.Furthermore,it restrained the oxidation of ferrous corrosion products,which greatly weakened the cathodic depolarization of rust,leading to the cathodic process being dominated by the hydrogen evolution reaction. 展开更多
关键词 Low alloy steel bentonite Water content Corrosion evolution Electrochemical measurement
原文传递
Thermal effects on the strain rate-dependent behavior of highly compacted GMZ01 bentonite
11
作者 Pengju Qin Weimin Ye +1 位作者 Qiong Wang Yonggui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期453-464,共12页
Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste... Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones. 展开更多
关键词 Highly compacted bentonite Rate-dependent behavior Constant rate of strain Temperature Elastic-thermo-viscoplastic model
在线阅读 下载PDF
Gas breakthrough in compacted Gaomiaozi bentonite under rigid boundary conditions
12
作者 Weimin Ye Sai Li +2 位作者 Puhuai Lu Qiong Wang Yonggui Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3883-3893,共11页
Predicting the gas breakthrough pressure of saturated compacted bentonite is crucial for ensuring the long-term safe operation of deep geological repositories for the disposal of high-level radioactive nuclear wastes.... Predicting the gas breakthrough pressure of saturated compacted bentonite is crucial for ensuring the long-term safe operation of deep geological repositories for the disposal of high-level radioactive nuclear wastes.In this work,the swelling pressure,water injection,gas injection and mercury intrusion porosimetry(MIP)tests on saturated compacted Gaomiaozi(GMZ)bentonite specimens with a dry density of 1.3 Mg/m^(3),1.4 Mg/m^(3),1.5 Mg/m^(3),1.6 Mg/m^(3) and 1.7 Mg/m^(3) were conducted.Subsequently,the relationships between the swelling pressure and average inter-particle distance,as well as between the gas entry pressure and the maximum effective pore size were analyzed and established.Considering that gas migration and breakthrough are all closely related to the pore structures of the tested geomaterials,a novel gas breakthrough pressure prediction model based on the pore size distribution(PSD)curve was constructed using an existing prediction model based on gas entry pressure and swelling pressure.Finally,based on the test results of the specimens 1.5 Mg/m^(3),1.6 Mg/m^(3) and 1.7 Mg/m^(3),gas breakthrough pressures of the specimens with dry densities of 1.3 Mg/m^(3) and 1.4 Mg/m^(3) were predicted.The results show that the calculated gas breakthrough pressures of 0.76 MPa and 1.28 MPa are very close to the measured values of 0.80 MPa and 1.30 MPa,validating the accuracy of the proposed model. 展开更多
关键词 High-level nuclear waste disposal Compacted bentonite Gas breakthrough pressure Pore size distribution Model
在线阅读 下载PDF
Sand displacement and nonuniform swelling in sand–bentonite mixture by image processing
13
作者 Hao Wang Hailong Wang +2 位作者 Hideo Komine Daichi Ito Kunlin Ruan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5099-5110,共12页
This paper presents a method for obtaining the displacement of sand particles in a sand–bentonite mixture(SBM)when saturated with water,based on particle tracking velocimetry(PTV).The raw photographs were first conve... This paper presents a method for obtaining the displacement of sand particles in a sand–bentonite mixture(SBM)when saturated with water,based on particle tracking velocimetry(PTV).The raw photographs were first converted into binary images.The sand particles were then detected,and the displacement of the sand particles was obtained by comparing their positions in adjacent images.The swelling strain induced by saturation was also obtained using the proposed PTV method.This method was validated by comparing the result with those obtained using a displacement transducer.Subsequently,a comparative analysis of sand particle displacements was conducted for specimens with varying bentonite content(BC),initial thickness,and water infiltration directions.The experimental results obtained were as follows:(1)For specimens with different BCs,local swelling displacement of sand particles at the top part of the specimen increased with higher BCs;(2)For specimens with various heights(hsp),larger local swelling displacement was generated at lower hsp at the initial state;(3)Local swelling characteristics differed in different water infiltration directions.Top-side infiltration showed a significant downward movement of particles during the first several hours of swelling.An estimation method for the dry density distribution of the specimen was proposed based on PTV data and then verified by slicing dry density and water content measurement results. 展开更多
关键词 Buffer material Sand–bentonite mixtures(SBM) Swelling deformation Laboratory tests Nonuniform swelling
在线阅读 下载PDF
Gas migration at the granite-bentonite interface under semirigid boundary conditions in the context of high-level radioactive waste disposal
14
作者 Jiangfeng Liu Zhipeng Wang +3 位作者 Jingna Guo Andrey Jivkov Majid Sedighi Jianfu Shao 《Deep Underground Science and Engineering》 2025年第3期422-436,共15页
The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between t... The corrosion of waste canisters in the deep geological disposal facilities(GDFs)for high-level radioactive waste(HLRW)can generate gas,which escapes from the engineered barrier system through the interfaces between the bentonite buffer blocks and the host rock and those between the bentonite blocks.In this study,a series of water infiltration and gas breakthrough experiments were conducted on granite and on granite-bentonite specimens with smooth and grooved interfaces.On this basis,this study presents new insights and a quantitative assessment of the impact of the interface between clay and host rock on gas transport.As the results show,the water permeability values from water infiltration tests on granite and granite-bentonite samples(10−19-10−20m^(2))are found to be slightly higher than that of bentonite.The gas permeability of the mock-up samples with smooth interfaces is one order of magnitude larger than that of the mock-up with grooved interfaces.The gas results of breakthrough pressures for the granite and the granite-bentonite mock-up samples are significantly lower than that of bentonite.The results highlight the potential existence of preferential gas migration channels between the rock and bentonite buffer that require further considerations in safety assessment. 展开更多
关键词 gas migration GMZ granite–bentonite interface low-permeability porous medium semirigid boundary
原文传递
Investigation of co-transport behavior of strontium and bentonite colloids in granite disposal environment
15
作者 Yang-Chun Leng Jin-Cai Feng +2 位作者 Qiao Jiang Ze-Hua Li Hao-Xin Feng 《Nuclear Science and Techniques》 2025年第9期59-74,共16页
Colloids are prevalent in nuclear waste repositories,with bentonite colloids posing an uncontrollable risk factor for nuclide migration processes.In this study,static adsorption experiments were coupled with dynamic s... Colloids are prevalent in nuclear waste repositories,with bentonite colloids posing an uncontrollable risk factor for nuclide migration processes.In this study,static adsorption experiments were coupled with dynamic shower experiments to comprehensively investigate the influence of bentonite colloids on Sr^(2+)migration in granite,considering adsorption capacity.Bentonite colloids have a considerably greater adsorption capacity than both bentonite and granite,with a maximum adsorption of 30.303 mg/g.The adsorption behavior of bentonite colloids on Sr^(2+)is well described by the Langmuir isotherm and pseudo-second-order kinetic models,indicating that a single-layer chemical adsorption process is controlled by the site activation energy.The adsorbed Sr^(2+)is unevenly distributed on the colloids,and the adsorption mechanism may involve ion exchange with Ca.Bentonite colloids exhibit superior adsorption in neutral environments.The cations in groundwater inhibit Sr^(2+)adsorption,and the inhibition efficacy decreases in the order Fe^(3+)>Ca^(2+)>Mg^(2+)>K^(+).The presence of bentonite colloids in a granite column slightly influences the retention of Sr^(2+)in the column while markedly reducing the Sr^(2+)penetration time from 70 h to 18 h.However,the coexistence of Co^(2+),Ni^(2+),and Cs^(+)in a multinuclide system weakens the ability of the colloids to promote Sr^(2+)migration.In comigration of colloid and multinuclide systems,the adsorption of nuclides by bentonite colloids causes the nuclide migration speed to decrease in the order Sr^(2+)>Cs^(+)>Ni^(2+)>Co^(2+).This study provides insights into Sr^(2+)migration in cave repositories for low-and medium-level radioactive waste. 展开更多
关键词 GRANITE Radioactive cave disposal bentonite colloid
在线阅读 下载PDF
Effect of shaking time, ionic strength, temperature and pH value on desorption of Cr(III) adsorbed onto GMZ bentonite 被引量:5
16
作者 陈永贵 贺勇 +2 位作者 叶为民 隋旺华 肖明明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3482-3489,共8页
The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value... The Cr(III) desorption experiments of Gaomiaozi (GMZ) bentonite in aqueous solutions were performed. The variables affecting the desorption behaviors, such as contact time, concentration of the desorbent, pH value of the solution, temperature and desorption isotherms, were investigated by the batch experiments. The results show that the adsorbed Cr(III) on GMZ bentonite can be easily extracted by the desorbent. Kinetics examination shows that desorption is slower than adsorption, and the desorption rate increases with time and reaches the equilibrium after 3 h. The final desorption ratios of Cr(III) are 89.4%, 56.5%and 77.2%in the desorption solution with 0.1 mol/L HCl, 1 mol/L NaCl, and 1 mol/L CaCl2, respectively, and the concentration can promote the desorption progress. Furthermore, the results of successive regeneration cycles indicate that the bentonite has a good regeneration ability and reusability. The pH value is an important factor in the Cr(III) desorption from the GMZ bentonite. The results of adsorption and desorption isotherms show that both adsorption and desorption isotherms are consistent with the Freundlich equation. The comparison of adsorption and desorption isotherms implies that the adsorption/desorption hysteresis is negligible and the transport of Cr(III) in bentonite can be described by a reversible adsorption process. 展开更多
关键词 GMZ bentonite Cr(III) DESORPTION isotherms
在线阅读 下载PDF
Synthesis of nano-MoS_2/bentonite composite and its application for removal of organic dye 被引量:2
17
作者 胡坤宏 赵娣芳 刘俊生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2484-2490,共7页
A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron micr... A nano-MoS2/bentonite composite was synthesized by calcinating MoS3 deposited on bentonite in H2. The obtained composite was characterized using thermogravimetric analysis, X-ray diffractometer, scanning electron microscope and transmission electron microscope. The results show that nano-MoS2 particles are distributed on the surface of bentonite and form layered structures with layer distance of about 0.64 nm. The composite presents an excellent performance for the removal of methyl orange. Some operation conditions affect the removal efficiency of methyl orange, such as dosage of composite, initial concentration of methyl orange, temperature and pH value. However, light source does not influence the removal efficiency. The removal mechanism is attributed to the adsorption of methyl orange on the nano-MoS2/bentonite composite. The adsorption of methyl orange on the composite is in accordance with the pseudo-second-order kinetic model. 展开更多
关键词 molybdenum disulfide bentonite NANOPARTICLES PHOTOCATALYSIS ADSORPTION organic dye
在线阅读 下载PDF
Effect of water chemistry on the hydro-mechanical behaviour of compacted mixtures of claystone and Na/Ca-bentonites for deep geological repositories 被引量:1
18
作者 Zhixiong Zeng Yu-Jun Cui Jean Talandier 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期527-536,共10页
In the French deep geological disposal for radioactive wastes,compacted bentonite/claystone mixtures have been considered as possible sealing materials.After emplacement in place,such mixtures are hydrated by the site... In the French deep geological disposal for radioactive wastes,compacted bentonite/claystone mixtures have been considered as possible sealing materials.After emplacement in place,such mixtures are hydrated by the site solution as well as the cement solution produced by the degradation of concrete.In this study,the effects of synthetic site solution and cement solution on the hydro-mechanical behaviour of compacted mixtures of claystone and two types of bentonites(MX80 Na-bentonite and Sardinia Cabentonite)were investigated by carrying out a series of swelling pressure,hydraulic conductivity and mercury intrusion porosimetry(MIP)tests.It was found that for the MX80 bentonite/claystone mixture hydrated with synthetic site solution,the swelling capacity was reduced compared to the case with deionised water owing to the transformation of Na-montmorillonite to multi-cation dominant montmorillonite by cation exchanges.For the Sardinia bentonite/claystone mixture,the similar increasing rate of swelling pressure was observed during the crystalline swelling process for different solutions,suggesting insignificant cation exchanges.Additionally,the cations in the synthetic site solution could reduce the thickness of diffuse double layer and the osmotic swelling for both MX80 bentonite/claystone and Sardinia bentonite/claystone mixtures.The large-pore volume increased consequently and enhanced water flow.In the cement solution,the hydroxide could also dissolve the montmorillonite,reducing the swelling pressure,and increase the large-pore volume,facilitating the water flow.Furthermore,the decrease of swelling pressure and the increase of hydraulic conductivity were more significant in the case of low dry density because of more intensive interaction between montmorillonite and hydroxide due to the high permeability. 展开更多
关键词 bentonite/claystone mixture Synthetic site solution Cement solution bentonite type Swelling pressure Hydraulic conductivity
在线阅读 下载PDF
Effects of synthetic site water on bentonite-concrete system for a potential nuclear waste repository
19
作者 Zhao Sun Yong-Gui Chen +3 位作者 Wei-Min Ye Qiong Wang Dong-Bei Wu Zhen-Yu Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3786-3797,共12页
In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions... In high-level nuclear waste(HLW)repositories,concrete and compacted bentonite are designed to be employed as buffer materials,which may raise a problem of interactions between concrete and bentonite.These interactions would lead to mineralogy transformation and buffer performance decay of bentonite under the near field environment conditions in a repository.A small-scale experimental setup was established to simulate the concrete-bentonite-site water interaction system from a potential nuclear waste repository in China.Three types of mortars were prepared to correspond to the concrete at different degradation states.The results permit the determination of the following:(1)The macroproperties of Gaomiaozi(GMZ)bentonite(e.g.swelling pressure,permeability,the final dry density,and water content of reacted samples);(2)The composition evolution of fluids from the synthetic site water-concrete-bentonite interaction systems;(3)The sample characterization including Fourier transform infrared spectroscopy(FTIR)and X-ray powder diffraction(XRD).Under the infiltration of the synthesis Beishan site water(BSW),the swelling pressure of bentonite decreases slowly with time after reaching its second swelling peak.The flux decreases with time during the infiltrations,and it tends to be stable after more than 120 d.Due to the cation exchange reactions in the BSW-concrete-bentonite systems,the divalent cations(Ca and Mg)were consumed,and the monovalent cations(Na and K)were released.The dissolution of minerals in the bentonite such as albite causes Si increasing in the pore water.It was concluded that the hydro-mechanical property degradation of bentonite takes place when it comes into contact with concrete mortar,even under low-pH groundwater conditions.The soil dispersion,the uneven water content,and the uneven dry density in bentonite samples may partly contribute to the swelling decay of bentonite.Therefore,the direct contact with concrete has an obvious effect on the performance of bentonite. 展开更多
关键词 Mock-up device GMZ bentonite Site water-concrete-bentonite system Geochemistry Buffer performance
在线阅读 下载PDF
Characterization, Acid Activation and Bleaching Performance of Bentonite from Xinjiang 被引量:16
20
作者 武占省 李春 +4 位作者 孙喜房 徐小琳 代斌 李金娥 赵宏生 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第2期253-258,共6页
Bentonite produced in Xiazijie, Xinjiang (China) was characterized by X-ray diffraction (XRD), dif- ferential thermal analysis (DTA), thermogravimetric analysis (TG) and cation exchange capacity (CEC). The ben- tonite... Bentonite produced in Xiazijie, Xinjiang (China) was characterized by X-ray diffraction (XRD), dif- ferential thermal analysis (DTA), thermogravimetric analysis (TG) and cation exchange capacity (CEC). The ben- tonite is composed of dioctahedral montmorillonite with predominant quantity, certain amounts of quartz, feldspar and illite and minor amounts of kaolinite, gypsum, etc. The raw bentonite has a CEC of 0.6497 meq·g-1 and allows to be characterized as typical sodium bentonite. In order to bleach cottonseed oil, optimum conditions for sulfuric acid activation of the raw bentonites were investigated, which were obtained by selecting various acid strength, at 96—98℃ and activating for 4h with 1︰2 solid-liquid ratio. The acid activation bentonites were suitable for decol- orization of cottonseed oil through removing carotene and chlorophyll. The bleaching capabilities of different pig- ments with activated bentonite with treatment of 25% sulfuric acid were 70.3%, 73.1%, 83.2%, 81.8% and 88.9%, respectively. Bleaching with acid activated bentonite gave oils lower peroxide values and acid values. 展开更多
关键词 bentonite CHARACTERIZATION acid-activation bleaching capacity Xiazijie
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部