期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
基于改进淘金算法BP神经网络预测方法研究
1
作者 戴诗雨 孙哲 +1 位作者 袁凯 孙知信 《印刷与数字媒体技术研究》 北大核心 2025年第5期121-137,共17页
围绕时间序列数据精准预测的问题,本研究提出了基于改进淘金算法BP神经网络的预测方法。首先,针对传统淘金优化算法(GRO)收敛速度慢、易陷入局部最优等缺陷,引入了Tent混沌映射和莱维飞行策略,分别对该算法种群初始化和迭代寻优两个阶... 围绕时间序列数据精准预测的问题,本研究提出了基于改进淘金算法BP神经网络的预测方法。首先,针对传统淘金优化算法(GRO)收敛速度慢、易陷入局部最优等缺陷,引入了Tent混沌映射和莱维飞行策略,分别对该算法种群初始化和迭代寻优两个阶段进行改进,并通过算法测试和方法比较,验证了改进淘金优化算法(DGRO)在解决最优化问题方面的良好的性能。然后,设置BP神经网络基本参数,并利用DGRO对BP神经网络的初始连接权重和阈值进行调整,构建了DGRO-BP模型。最后,利用某快递驿站实际处理快件量的数据集对本研究提出的模型进行测试。结果显示,DGRO-BP在诸多预测精度评价指标上相较于BP和GWO-BP等具备优越性,尤其是在平均绝对误差(MAE)指标上,DGRO-BP模型的平均绝对误差比标准BP神经网络模型低了约46.15%,证实了DGRO-BP在处理该类问题上的优势,对时间序列数据预测问题的研究具有重要意义。 展开更多
关键词 淘金优化算法 算法优化 BP神经网络 快递数据预测 测试函数
在线阅读 下载PDF
融合多策略的沙猫群算法及其应用 被引量:1
2
作者 班云飞 张达敏 +1 位作者 左锋琴 沈倩雯 《计算机工程与设计》 北大核心 2025年第7期2054-2062,共9页
针对沙猫群算法易陷入局部最优、收敛速度慢等问题,提出一种融合多策略的沙猫群算法。将经典SCSO搜索阶段的位置更新公式做结构变体,增加种群的多样性;提出自适应麻雀因子提高算法的收敛速度和精度;在开发阶段引入动态螺旋探索策略,以... 针对沙猫群算法易陷入局部最优、收敛速度慢等问题,提出一种融合多策略的沙猫群算法。将经典SCSO搜索阶段的位置更新公式做结构变体,增加种群的多样性;提出自适应麻雀因子提高算法的收敛速度和精度;在开发阶段引入动态螺旋探索策略,以一种选择概率控制该策略的作用阶段,避免算法陷入局部最优。与其它算法在8个基准测试函数和Wilcoxon秩和检验上进行对比,实验结果表明,改进算法的寻优精度高、收敛速度快且具有跳出局部最优的能力,同时将其应用在5G基站中心选址问题中,验证了算法在实际应用中的有效性和可行性。 展开更多
关键词 沙猫群算法 结构变体 自适应麻雀因子 动态螺旋探索策略 5G基站中心选址 基准测试函数 秩和检验
在线阅读 下载PDF
融合多策略的改进河马优化算法及其应用 被引量:2
3
作者 袁磊 《海南大学学报(自然科学版中英文)》 2025年第3期289-296,共8页
针对标准河马优化算法存在全局探索能力欠缺及易陷入局部最优等不足,提出了一种融合多策略的改进河马优化算法。该算法通过在初始化过程中引入混沌映射来改善收敛速度,通过引入自适应权重防止算法陷入局部最优,并利用反向学习得到反向... 针对标准河马优化算法存在全局探索能力欠缺及易陷入局部最优等不足,提出了一种融合多策略的改进河马优化算法。该算法通过在初始化过程中引入混沌映射来改善收敛速度,通过引入自适应权重防止算法陷入局部最优,并利用反向学习得到反向解来扩大算法搜索范围。对改进河马优化算法采用6个基准测试函数进行性能测试,并与多个其他优化算法进行了比较。结果表明:改进河马优化算法的寻优性能明显优于其他优化算法。将改进河马优化算法应用于两个工程设计问题中,均取得了较好的优化效果。 展开更多
关键词 河马优化算法 多策略 基准测试函数 工程设计
在线阅读 下载PDF
多策略改进的蝴蝶优化算法
4
作者 张琪 顾腾达 +2 位作者 任宇辰 季津琪 陈海涛 《计算机工程与科学》 北大核心 2025年第7期1312-1320,共9页
针对蝴蝶优化算法存在搜索精度差、全局搜索和局部开发能力不平衡、容易陷入局部最优等问题,为提升蝴蝶优化算法的鲁棒性和寻优能力,提出一种多策略改进的蝴蝶优化算法。该算法选用随机一致性初始化蝴蝶种群,使蝴蝶个体在搜索空间中的... 针对蝴蝶优化算法存在搜索精度差、全局搜索和局部开发能力不平衡、容易陷入局部最优等问题,为提升蝴蝶优化算法的鲁棒性和寻优能力,提出一种多策略改进的蝴蝶优化算法。该算法选用随机一致性初始化蝴蝶种群,使蝴蝶个体在搜索空间中的各个维度分布更加均匀,对解空间的覆盖率更广;引入动态惯性权重策略,平衡全局搜索与局部搜索;引入精英差分变异策略,提高算法的全局搜索能力。将改进后的算法与7种优化算法在17个基准函数上进行实验对比,结果表明,改进后的算法相比于原始蝴蝶优化算法,具有更好的收敛性和求解精度,且全局寻优能力和鲁棒性得到了提升。 展开更多
关键词 蝴蝶优化算法 随机一致性初始化 差分进化算法 基准函数 Wilcoxon秩和检验
在线阅读 下载PDF
Circle混沌映射协同随机游走的混合白鲨优化算法
5
作者 郭彬 《现代信息科技》 2025年第18期65-69,共5页
白鲨优化算法的初始化种群质量较差,并且容易陷入局部最优。通过引入Circle混沌映射来提高白鲨优化算法在初始化阶段的种群多样性,并且以一定的概率触发随机游走策略,从而帮助算法更好地跳出局部最优。基于CEC2022基准测试函数集开展实... 白鲨优化算法的初始化种群质量较差,并且容易陷入局部最优。通过引入Circle混沌映射来提高白鲨优化算法在初始化阶段的种群多样性,并且以一定的概率触发随机游走策略,从而帮助算法更好地跳出局部最优。基于CEC2022基准测试函数集开展实验验证,通过与多种智能优化算法的对比分析发现,改进后的白鲨优化算法的性能指标较为突出。实验结果表明,该算法具有更高的求解精度和更快的收敛速度,同时在稳定性方面也优于其他对比算法。以上结果验证了改进策略的有效性。 展开更多
关键词 白鲨优化算法 CEC2022基准测试函数 Circle混沌映射 随机游走策略
在线阅读 下载PDF
基于余弦控制因子和多项式变异的鲸鱼优化算法 被引量:36
6
作者 黄清宝 李俊兴 +2 位作者 宋春宁 徐辰华 林小峰 《控制与决策》 EI CSCD 北大核心 2020年第3期559-568,共10页
针对基本鲸鱼优化算法(Whale optimization algorithm,WOA)在求解最优解不在原点附近的目标函数时存在收敛精度低、易陷入局部最优解的缺陷,提出一种基于余弦控制因子和多项式变异的鲸鱼优化算法(CPWOA).所提算法中控制参数按照余弦曲... 针对基本鲸鱼优化算法(Whale optimization algorithm,WOA)在求解最优解不在原点附近的目标函数时存在收敛精度低、易陷入局部最优解的缺陷,提出一种基于余弦控制因子和多项式变异的鲸鱼优化算法(CPWOA).所提算法中控制参数按照余弦曲线变化,并加入同步余弦惯性权值,使得在迭代前期减缓收敛速度以进行充分的全局探索,而在迭代后期加速收敛以提高算法精度;同时,对最佳鲸鱼位置引入多项式变异,以增强算法跳出局部最优解的能力.将所提算法对多个shifted单峰、多峰和固定维测试函数进行求解,实验结果表明,与基本WOA、EHO、GWO、SCA、MBO以及其他改进型WOA算法相比,CPWOA对绝大多数测试函数的求解有更高的精度和稳定性.用非参数估计方法对计算结果进行差异显著性统计检验,表明CPWOA算法的显著性更优. 展开更多
关键词 余弦因子 多项式变异 鲸鱼优化算法 全局优化 偏移型测试函数 统计检验
原文传递
动态搜索半径的果蝇优化算法 被引量:2
7
作者 高雷阜 赵世杰 +1 位作者 徒君 于冬梅 《计算机应用与软件》 CSCD 2016年第11期221-225,共5页
针对传统果蝇优化算法FOA(Fruit Fly Optimization Algorithm)固定搜索半径导致后期局部寻优性能弱、收敛缓慢的问题,提出一种动态搜索半径的果蝇优化算法DSR-FOA(Fruit Fly Optimization Algorithm With Dynamic Search Radius)。该算... 针对传统果蝇优化算法FOA(Fruit Fly Optimization Algorithm)固定搜索半径导致后期局部寻优性能弱、收敛缓慢的问题,提出一种动态搜索半径的果蝇优化算法DSR-FOA(Fruit Fly Optimization Algorithm With Dynamic Search Radius)。该算法前期以较大搜索半径保证全局寻优性能,而后期搜索半径随迭代次数动态递减以保证局部寻优性能,有效地实现算法全局与局部寻优性能的均衡。其次,针对传统果蝇优化算法不适于优化变量的区间设定问题,通过初始搜索半径设定和平移变换等技术提出一种有效的区间限定方法。数值实验结果表明:改进算法具有较好的寻优精度和预测标准差等指标,验证了算法的有效性和可行性。 展开更多
关键词 果蝇优化算法 搜索半径 平移变换 基准测试函数
在线阅读 下载PDF
遗传并行粒子群优化算法及其性能分析 被引量:1
8
作者 刘昊 李大卫 王莉 《辽宁科技大学学报》 CAS 2008年第3期239-239,共1页
在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量... 在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量高的特点。相信应用于大规模工程实际问题也能取到令人满意的结果。 展开更多
关键词 粒子群优化算法 遗传算法 性能分析 并行 benchmark JAVA语言 测试分析 测试函数
在线阅读 下载PDF
遗传并行粒子群优化算法及其性能分析 被引量:1
9
作者 刘昊 李大卫 王莉 《辽宁科技大学学报》 CAS 2008年第5期495-499,共5页
在已有的并行粒子群优化算法的基础上,结合遗传算法,并利用Java语言支持多线程特点,开发出单子群、k子群、任意子群三种遗传并行粒子群优化算法。通过对6个Benchmark测试函数的测试分析,表明这三种算法都具有运行速度快,求解质量高的特点。
关键词 粒子群优化 并行 遗传算法 benchmark测试函数 性能分析
在线阅读 下载PDF
竞争算法优化BP神经网络性能研究 被引量:2
10
作者 卢滢宇 《计算机系统应用》 2019年第5期173-177,共5页
针对诸多群智能算法容易陷入局部最优、收敛速度慢的特点,提出一种参数设置少,全局搜索能力强的竞争算法.通过10个基准函数与粒子群算法的比较, 30次试验下竞争算法的平均值与最小值均优于粒子群算法,验证了该算法的有效性.用竞争算法优... 针对诸多群智能算法容易陷入局部最优、收敛速度慢的特点,提出一种参数设置少,全局搜索能力强的竞争算法.通过10个基准函数与粒子群算法的比较, 30次试验下竞争算法的平均值与最小值均优于粒子群算法,验证了该算法的有效性.用竞争算法优化BP神经网络,并对11个测试数据集进行分类,实验结果表明,用竞争算法优化后的BP神经网络在11个测试集上性能均优于原始算法,且在大部分测试集上性能优于用遗传算法优化的BP神经网络.该算法能有效提高分类正确率,增强鲁棒性. 展开更多
关键词 BP神经网络 竞争算法 基准函数 测试数据集
在线阅读 下载PDF
基于正余弦的非线性哈里斯鹰优化算法 被引量:2
11
作者 夏小刚 彭嘉超 《河南科技大学学报(自然科学版)》 CAS 北大核心 2024年第5期93-104,M0008,共13页
针对哈里斯鹰优化算法(HHO)收敛精度低、易陷入局部最优等问题,提出了一种基于正余弦的非线性哈里斯鹰优化算法(SCNHHO)。首先,采用佳点集策略对种群进行初始化,使种群分布更均匀,提高算法收敛速度和精度;其次,在探索阶段引入正余弦策略... 针对哈里斯鹰优化算法(HHO)收敛精度低、易陷入局部最优等问题,提出了一种基于正余弦的非线性哈里斯鹰优化算法(SCNHHO)。首先,采用佳点集策略对种群进行初始化,使种群分布更均匀,提高算法收敛速度和精度;其次,在探索阶段引入正余弦策略,利用正余弦函数的震荡特性扩大搜索范围,寻求更多潜在的优质解;最后,在开发阶段引入非线性参数来平衡探索与开发,避免算法陷入局部最优。针对不同维度的基准测试函数进行性能测试,结合Wilcoxon秩和检验与Friedman检验的结果,将该算法与其他5个对比算法进行分析。结果表明,改进算法性能较原始HHO算法有较大提升,并且优于斑马优化算法(ZOA)、鲸鱼优化算法(WOA)和2种哈里斯鹰算法的变体(MHHO和IHHO),验证了改进策略的有效性。最后通过三杆桁架设计问题进一步验证了SCNHHO的实用性。 展开更多
关键词 哈里斯鹰优化算法 佳点集策略 正余弦函数 非线性参数 Wilcoxon秩和检验 基准测试函数
在线阅读 下载PDF
一种新的全局优化算法:碳循环算法
12
作者 杨达 罗亮 郑龙 《计算机科学》 CSCD 北大核心 2023年第S01期60-66,共7页
随着人类科学技术水平的高速发展,在应用研究、工程设计等领域存在维数大、阶数高、目标函数多、约束条件复杂等传统算法难以求解的困难问题需要优化和解决。以计算机运算与解决问题水平的持续发展为基础,元启发式优化算法被提出并被证... 随着人类科学技术水平的高速发展,在应用研究、工程设计等领域存在维数大、阶数高、目标函数多、约束条件复杂等传统算法难以求解的困难问题需要优化和解决。以计算机运算与解决问题水平的持续发展为基础,元启发式优化算法被提出并被证明解决以上类别的问题要优于传统优化方法。作为对元启发式优化算法的补充,文中提出了一种新的用于连续全局优化的元启发式算法:碳循环算法(Carbon Cycle Algorithm,CCA)。该算法模拟了碳元素的自然循环过程,具体为通过模拟动植物呼吸、动物捕食、动植物死亡、分解者分解以及植物光合作用过程,以此为策略来更好地探索和利用搜索空间。通过与一些著名的优化算法在13个基准函数上的测试对比结果,剖析了该算法的计算收敛过程。测试结果表明,该算法具有一定的竞争力并能够解决具有挑战性的问题,可以在大多数基准函数上提供更好的求解精度。 展开更多
关键词 碳循环 元启发式算法 全局优化 基准函数测试 最优解
在线阅读 下载PDF
基于迭代局部搜索的区划问题算法研究 被引量:2
13
作者 孔云峰 《地球信息科学学报》 CSCD 北大核心 2022年第9期1730-1741,共12页
区划问题是将特定地理区域划分为若干空间连续的分区,满足分区内差异最小和分区间差异最大这一基本原则,广泛应用于地理、环境、生态、经济、农业、城市等领域。1960s以来,学者尝试建立各种区划问题数学模型,设计了一系列的求解算法,代... 区划问题是将特定地理区域划分为若干空间连续的分区,满足分区内差异最小和分区间差异最大这一基本原则,广泛应用于地理、环境、生态、经济、农业、城市等领域。1960s以来,学者尝试建立各种区划问题数学模型,设计了一系列的求解算法,代表性的算法主要有:AZP、ARISEL、SKATER和REDCAP。本文提出了一个基于迭代局部搜索(ILS)的区划问题算法,进一步提升算法性能。该算法主要机制包括:邻域单元移动搜索改进分区质量;参照中心单元快速计算分区方差,提升算法速度;使用扰动机制跳出当前解局部最优状态;更新分区中心点提升分区方案目标值;使用群搜索探索更大的解空间;以及算法各步骤中通过分区空间连续判断和破碎修复保持分区空间连续。55个基准案例测试表明:ILS算法求解质量优于ARISEL和SKATER算法。一个多指标气候分区实验也表明:ILS算法求解质量优于SKATER、REDCAP和ARISEL算法。 展开更多
关键词 区划 区划问题 目标函数 迭代局部搜索 基准测试 案例研究
原文传递
融合混沌映射和自适应T分布的蜣螂优化算法
14
作者 李红民 马亚伟 +1 位作者 刘瑞玉 汪明 《软件工程》 2024年第11期63-68,共6页
针对原始蜣螂优化算法(DBO)存在的收敛精度低、易陷入局部最优等问题,提出一种改进的蜣螂优化算法。该算法采用混沌映射初始化蜣螂种群以提高种群的多样性,引入北方苍鹰优化算法的勘探策略以增强算法的全局勘探能力,并改进一种非线性边... 针对原始蜣螂优化算法(DBO)存在的收敛精度低、易陷入局部最优等问题,提出一种改进的蜣螂优化算法。该算法采用混沌映射初始化蜣螂种群以提高种群的多样性,引入北方苍鹰优化算法的勘探策略以增强算法的全局勘探能力,并改进一种非线性边界收敛因子以平衡其收敛速度和收敛精度。同时,采用自适应T分布扰动策略以增强算法跳出局部最优的能力。实验结果表明,改进后的DBO算法在15个基准测试函数的求解寻优中,有13个测试函数的求解结果优于原始蜣螂优化算法、麻雀搜索算法、灰狼优化算法、鲸鱼优化算法和哈里斯鹰优化算法的求解结果,表现出更高的收敛精度、更快的收敛速度及更高的稳定性。 展开更多
关键词 蜣螂优化算法 混沌映射 T分布扰动 基准测试函数
在线阅读 下载PDF
一种快速高效的人工蜂群算法
15
作者 王晓娟 《电子科技》 2015年第3期61-64,共4页
针对人工蜂群算法收敛速度慢和易陷入局部最优的缺点,在雇佣蜂搜索阶段提出了一种基于多维搜索和一维搜索的混合搜索策略,能克服单一一维搜索下收敛速度慢的缺点,有效加快收敛速度;提出了新的跟随蜂蜜源选择策略,可保证种群多样性,增强... 针对人工蜂群算法收敛速度慢和易陷入局部最优的缺点,在雇佣蜂搜索阶段提出了一种基于多维搜索和一维搜索的混合搜索策略,能克服单一一维搜索下收敛速度慢的缺点,有效加快收敛速度;提出了新的跟随蜂蜜源选择策略,可保证种群多样性,增强算法全局搜索能力。通过对12个基准测试函数进行仿真实验并与原算法进行比较,其结果表明改进的算法在收敛速度和精度上均优于人工蜂群算法。 展开更多
关键词 人工蜂群算法 多维搜索 一维搜索 种群多样性 基准测试函数
在线阅读 下载PDF
混合多策略改进的蜣螂优化算法 被引量:8
16
作者 娄革伟 郑永煌 +3 位作者 陈均 谌廷政 索相波 刘旭亮 《计算机工程与应用》 CSCD 北大核心 2024年第24期97-109,共13页
针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正... 针对原始蜣螂优化算法全局探索能力不足、易陷入局部最优以及收敛精度不理想等问题,提出了一种混合多策略改进的蜣螂优化算法。采用混沌映射结合随机反向学习策略初始化种群提高多样性,扩大解空间搜索范围,增强全局寻优能力;通过黄金正弦策略实现个体动态搜索,提高算法遍历性;引入竞争机制增强信息交互,平衡全局探索与局部开发,加快算法收敛速度;最后在迭代后期利用自适应t分布变异对个体进行扰动,避免算法陷入局部最优。在23个基准测试函数中,将该算法与其他优化算法进行对比测试,结果表明,改进后的算法具有更强的寻优性能、更高的收敛精度和更好的稳定性。在具体工程设计实例中的应用验证了该算法在处理实际优化问题上的有效性。 展开更多
关键词 蜣螂优化算法 随机反向学习 混沌映射 黄金正弦策略 竞争机制 t分布变异 基准测试函数 工程设计实例
在线阅读 下载PDF
改进正弦算法引导的蜣螂优化算法 被引量:72
17
作者 潘劲成 李少波 +2 位作者 周鹏 杨贵林 吕东超 《计算机工程与应用》 CSCD 北大核心 2023年第22期92-110,共19页
蜣螂优化器(dung beetle optimizer,DBO)是一种有效的元启发式算法。蜣螂优化算法虽然具有寻优能力强,收敛速度快的特点,但同时也存在全局探索和局部开发能力不平衡,容易陷入局部最优,且全局探索能力较弱的缺点。提出了一种改进的DBO算... 蜣螂优化器(dung beetle optimizer,DBO)是一种有效的元启发式算法。蜣螂优化算法虽然具有寻优能力强,收敛速度快的特点,但同时也存在全局探索和局部开发能力不平衡,容易陷入局部最优,且全局探索能力较弱的缺点。提出了一种改进的DBO算法来解决全局优化问题,命名为MSADBO。受改进正弦算法(improved sine algorithm,MSA)的启发,赋予蜣螂MSA的全局探索和局部开发能力,扩大其搜索范围,提高全局探索能力,减少陷入局部最优的可能性。同时加入了混沌映射初始化和变异算子进行扰动。为了验证MSADBO的有效性,对该算法采用23个基准测试函数进行了测试,并与其他知名的元启发式算法进行了比较。结果表明,该算法具有良好的性能。为了进一步阐述MSADBO算法的实际应用潜力,将该算法成功地应用于3个工程设计问题。实验结果表明,所提出的MSADBO算法可以有效地处理实际应用问题。 展开更多
关键词 蜣螂优化算法 改进正弦算法 MSADBO 混沌映射初始化 变异算子 基准测试函数 工程设计问题
在线阅读 下载PDF
多策略融合改进的蜣螂优化算法 被引量:14
18
作者 王乐遥 顾磊 《计算机系统应用》 2024年第2期224-231,共8页
针对标准蜣螂优化算法(DBO)存在的全局探索能力欠缺、收敛精度低及易陷入局部最优等不足,提出了一种融合多策略的改进蜣螂优化算法(MSDBO).首先,引入社会学习策略引导推球蜣螂进行位置更新,提高了算法全局探索能力,避免算法陷入局部最优... 针对标准蜣螂优化算法(DBO)存在的全局探索能力欠缺、收敛精度低及易陷入局部最优等不足,提出了一种融合多策略的改进蜣螂优化算法(MSDBO).首先,引入社会学习策略引导推球蜣螂进行位置更新,提高了算法全局探索能力,避免算法陷入局部最优;其次,提出一种方向跟随策略,建立起小偷蜣螂与推球蜣螂个体间的交互,提高了寻优精度;最后,引入环境感知概率,引导小偷蜣螂合理采用方向跟随策略,兼顾了性能与时间消耗.在12个基准测试函数上进行求解分析,并与其他优化算法进行对比,证明了MSDBO的寻优性能明显优于对比算法,在压力容器设计优化问题上的结果验证了MSDBO求解实际工程约束优化问题的有效性. 展开更多
关键词 蜣螂优化算法 社会学习 方向跟随 环境感知概率 基准测试函数 压力容器设计
在线阅读 下载PDF
全局扰动和互利因子作用的飞蛾扑火优化算法 被引量:5
19
作者 靳储蔚 李姗鸿 +1 位作者 张琳娜 张达敏 《计算机工程与设计》 北大核心 2023年第8期2297-2304,共8页
为解决飞蛾扑火优化(moth-flame optimization, MFO)算法收敛速度慢、容易陷入局部最优等问题,提出一种飞蛾扑火优化(DBMFO)算法。使用Bernoulli混沌映射,提高初始种群的多样性;引入全局扰动因子,提高算法的全局搜索能力;使用互利因子... 为解决飞蛾扑火优化(moth-flame optimization, MFO)算法收敛速度慢、容易陷入局部最优等问题,提出一种飞蛾扑火优化(DBMFO)算法。使用Bernoulli混沌映射,提高初始种群的多样性;引入全局扰动因子,提高算法的全局搜索能力;使用互利因子对全局扰动后的位置再次进行更新,避免新的算法陷入局部最优,使得算法更快收敛。通过对10个基准函数进行仿真实验,确定迭代系数的取值,通过Wilcoxon秩和检验来验证算法性能,其结果表明,改进的DBMFO算法在求解的精确度以及收敛速度上均有明显提升。 展开更多
关键词 群智能算法 飞蛾扑火优化 伯努利混沌映射 全局扰动因子 互利因子 10个基准测试函数 秩和检验
在线阅读 下载PDF
一种多策略改进鲸鱼优化算法的混沌系统参数辨识 被引量:4
20
作者 潘悦悦 吴立飞 杨晓忠 《智能系统学报》 CSCD 北大核心 2024年第1期176-189,共14页
针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初... 针对混沌系统参数辨识精度不高的问题,以鲸鱼优化算法(whale optimization algorithm,WOA)为基础,提出一种多策略改进鲸鱼优化算法(multi-strategy improved whale optimization algorithm,MIWOA)。采用Chebyshev混沌映射选取高质量初始种群,采用非线性收敛因子和自适应权重,提高算法收敛速度,为了避免算法陷入局部最优,动态选择自适应t分布或蚁狮优化算法更新后期位置,提高处理局部极值的能力。通过对10个基准函数和高维测试函数进行仿真试验,表明MIWOA具有良好的稳定性和收敛精度。将MIWOA应用于辨识Rossler和Lu混沌系统参数,仿真结果优于现有成果,表明本文MIWOA辨识混沌系统参数的高效性和实用性。 展开更多
关键词 多策略改进鲸鱼优化算法 混沌系统 参数辨识 Chebyshev混沌映射 自适应t分布 蚁狮优化算法 基准函数 Wilcoxon秩和检验
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部