Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the...Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance.展开更多
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr...The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.展开更多
基金supported by the National Key Research and Development Program of China (2022YFB3304700)Hunan Province Natural Science Foundation (2022JJ50132,2022JCYJ05 and 2022JCYJ09).
文摘Proportioning is an important part of sintering,as it affects the cost of sintering and the quality of sintered ore.To address the problems posed by the complex raw material information and numerous constraints in the sintering process,a multi-objective optimisation model for sintering proportioning was established,which takes the proportioning cost and TFe as the optimisation objectives.Additionally,an improved multi-objective beluga whale optimisation(IMOBWO)algorithm was proposed to solve the nonlinear,multi-constrained multi-objective optimisation problems.The algorithm uses the con-strained non-dominance criterion to deal with the constraint problem in the model.Moreover,the algorithm employs an opposite learning strategy and a population guidance mechanism based on angular competition and two-population competition strategy to enhance convergence and population diversity.The actual proportioning of a steel plant indicates that the IMOBWO algorithm applied to the ore proportioning process has good convergence and obtains the uniformly distributed Pareto front.Meanwhile,compared with the actual proportioning scheme,the proportioning cost is reduced by 4.3361¥/t,and the TFe content in the mixture is increased by 0.0367%in the optimal compromise solution.Therefore,the proposed method effectively balances the cost and total iron,facilitating the comprehensive utilisation of sintered iron ore resources while ensuring quality assurance.
文摘The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time.