In contrast to well-studied rift basins in NE China,the Hailar Basin has received relatively less attention regarding the combined patterns of different types of grabens and half-grabens.This study aims to explore whe...In contrast to well-studied rift basins in NE China,the Hailar Basin has received relatively less attention regarding the combined patterns of different types of grabens and half-grabens.This study aims to explore whether the combined patterns of grabens in the Hailar Basin exhibit similar characteristics to those in other NE China rift basins and to identify the underlying causes.To achieve this,a comprehensive analysis of the major fault systems and the combined patterns of faulted sub-depressions,as well as their controlling mechanisms,was conducted.This analysis utilized the latest 3D seismic data that cover nearly the entire Beier Depression.Three groups of pre-existing fault systems were observed in the basement of the Beier Depression,and they are the NEE-EW-trending fault systems,the NE-trending fault systems,and the NW-trending fault systems.The NEE-EW-trending fault systems were distributed in the central part of the Beier Depression and primarily controlled the sedimentary filling of the Tongbomiao and the Lower Nantun Formations.The NE-trending fault systems were distributed in the southwestern part of the Beier Depression and primarily controlled the sedimentary filling of the Upper Nantun Formations.The NW-trending fault systems were distributed rarely in the Beier Depression.Five kinds of combined patterns of the sub-depressions were developed in the Beier Depression,and they are the parallel,en echelon,face-to-face,back-to-back,and S-shaped combined patterns.They were controlled by the NEE-EW-trending and the NE-trending fault systems with different orientations,arrangements,and activation sequences.展开更多
The theory of "source rock control" has evolved from source-rock-control hydrocarbon accumulation, to effective source-rock-control hydrocarbon accumulation, and to high-quality source- rock-control hydrocarbon accu...The theory of "source rock control" has evolved from source-rock-control hydrocarbon accumulation, to effective source-rock-control hydrocarbon accumulation, and to high-quality source- rock-control hydrocarbon accumulation. However, there are problems, such as whether high-quality source rocks exist or not? What high-quality source rocks are, and how to identify them, are yet to be agreed upon. Aimed at this issue of concern to explorationists, and taking the Beier Sag in the Hailaer Basin as an example, this paper defines the high-quality source rocks and the lower limit for evaluation of high-quality source rocks, by using the inflection point on the relationship curve of hydrocarbon (oil) expulsion, which is calculated by the material balance principle, versus total organic carbon (TOC). The results show that when TOC is low, all source rocks have limited hydrocarbon expulsion and slow growth rate, thus they cannot be high-quality source rocks. However, when TOC rises to some threshold, hydrocarbon expulsion increases significantly with TOC. This inflection point should be the lower limit of high-quality source rocks: those with TOC greater than the inflection-point value are high-quality source rocks. In addition, the lower limit of high-quality source rocks is also related to the type and maturity of organic matters in the source rocks, as well as the mineral components of the source rocks affecting the residual hydrocarbons. Theoretically, the lower limit of high-quality source rocks depends on geological conditions rather than being a constant value. However, for the sake of simplicity and practicability, in this paper TOC=2.0% is regarded as the lower limit of high-quality source rocks. The examination of such standard in the work area indicates that the high-quality source rocks in members K^n2 and K^n~ of the Nantun formation contribute 76% and 82% to oil generation, and 96% and 91% to oil expulsion, respectively. The distribution of high-quality source rocks is also closely related to the distribution of hydrocarbon reservoirs in the region, demonstrating that high-quality source rocks control hydrocarbon accumulation.展开更多
Based on analysis of core observation, thin sections, cathodoluminescence, scanning electron microscope(SEM), etc., and geochemical testing of stable carbon and oxygen isotopes composition, element content, fluid incl...Based on analysis of core observation, thin sections, cathodoluminescence, scanning electron microscope(SEM), etc., and geochemical testing of stable carbon and oxygen isotopes composition, element content, fluid inclusions, and formation water, the fluid interaction mechanism and diagenetic reformation of fracture-pore basement reservoirs of epimetamorphic pyroclastic rock in the Beier Sag, Hailar Basin were studied. The results show that:(1) Two suites of reservoirs were developed in the basement, the weathering section and interior section, the interior section has a good reservoir zone reaching the standard of type I reservoir.(2) The secondary pores are formed by dissolution of carbonate minerals, feldspar, and tuff etc.(3) The diagenetic fluids include atmospheric freshwater, deep magmatic hydrothermal fluid, organic acids and hydrocarbon-bearing fluids.(4) The reservoir diagenetic reformation can be divided into four stages: initial consolidation, early supergene weathering-leaching, middle structural fracture-cementation-dissolution, and late organic acid-magmatic hydrothermal superimposed dissolution. Among them, the second and fourth stages are the stages for the formation of weathering crust and interior dissolution pore-cave reservoirs, respectively.展开更多
基金supported by the Major National Science and Technology Programs of China(No.2016E-0202,No.QGYQZYPJ2022-1).
文摘In contrast to well-studied rift basins in NE China,the Hailar Basin has received relatively less attention regarding the combined patterns of different types of grabens and half-grabens.This study aims to explore whether the combined patterns of grabens in the Hailar Basin exhibit similar characteristics to those in other NE China rift basins and to identify the underlying causes.To achieve this,a comprehensive analysis of the major fault systems and the combined patterns of faulted sub-depressions,as well as their controlling mechanisms,was conducted.This analysis utilized the latest 3D seismic data that cover nearly the entire Beier Depression.Three groups of pre-existing fault systems were observed in the basement of the Beier Depression,and they are the NEE-EW-trending fault systems,the NE-trending fault systems,and the NW-trending fault systems.The NEE-EW-trending fault systems were distributed in the central part of the Beier Depression and primarily controlled the sedimentary filling of the Tongbomiao and the Lower Nantun Formations.The NE-trending fault systems were distributed in the southwestern part of the Beier Depression and primarily controlled the sedimentary filling of the Upper Nantun Formations.The NW-trending fault systems were distributed rarely in the Beier Depression.Five kinds of combined patterns of the sub-depressions were developed in the Beier Depression,and they are the parallel,en echelon,face-to-face,back-to-back,and S-shaped combined patterns.They were controlled by the NEE-EW-trending and the NE-trending fault systems with different orientations,arrangements,and activation sequences.
基金funded by the 973 Prophase Special Program of China(NO.2011CB211701)National Natural Science Foundation of China(41172134)CNPC Innovation Foundation (2011D-5006-0101)
文摘The theory of "source rock control" has evolved from source-rock-control hydrocarbon accumulation, to effective source-rock-control hydrocarbon accumulation, and to high-quality source- rock-control hydrocarbon accumulation. However, there are problems, such as whether high-quality source rocks exist or not? What high-quality source rocks are, and how to identify them, are yet to be agreed upon. Aimed at this issue of concern to explorationists, and taking the Beier Sag in the Hailaer Basin as an example, this paper defines the high-quality source rocks and the lower limit for evaluation of high-quality source rocks, by using the inflection point on the relationship curve of hydrocarbon (oil) expulsion, which is calculated by the material balance principle, versus total organic carbon (TOC). The results show that when TOC is low, all source rocks have limited hydrocarbon expulsion and slow growth rate, thus they cannot be high-quality source rocks. However, when TOC rises to some threshold, hydrocarbon expulsion increases significantly with TOC. This inflection point should be the lower limit of high-quality source rocks: those with TOC greater than the inflection-point value are high-quality source rocks. In addition, the lower limit of high-quality source rocks is also related to the type and maturity of organic matters in the source rocks, as well as the mineral components of the source rocks affecting the residual hydrocarbons. Theoretically, the lower limit of high-quality source rocks depends on geological conditions rather than being a constant value. However, for the sake of simplicity and practicability, in this paper TOC=2.0% is regarded as the lower limit of high-quality source rocks. The examination of such standard in the work area indicates that the high-quality source rocks in members K^n2 and K^n~ of the Nantun formation contribute 76% and 82% to oil generation, and 96% and 91% to oil expulsion, respectively. The distribution of high-quality source rocks is also closely related to the distribution of hydrocarbon reservoirs in the region, demonstrating that high-quality source rocks control hydrocarbon accumulation.
基金Supported by the PetroChina Science and Technology Project(2017-5307034-000002).
文摘Based on analysis of core observation, thin sections, cathodoluminescence, scanning electron microscope(SEM), etc., and geochemical testing of stable carbon and oxygen isotopes composition, element content, fluid inclusions, and formation water, the fluid interaction mechanism and diagenetic reformation of fracture-pore basement reservoirs of epimetamorphic pyroclastic rock in the Beier Sag, Hailar Basin were studied. The results show that:(1) Two suites of reservoirs were developed in the basement, the weathering section and interior section, the interior section has a good reservoir zone reaching the standard of type I reservoir.(2) The secondary pores are formed by dissolution of carbonate minerals, feldspar, and tuff etc.(3) The diagenetic fluids include atmospheric freshwater, deep magmatic hydrothermal fluid, organic acids and hydrocarbon-bearing fluids.(4) The reservoir diagenetic reformation can be divided into four stages: initial consolidation, early supergene weathering-leaching, middle structural fracture-cementation-dissolution, and late organic acid-magmatic hydrothermal superimposed dissolution. Among them, the second and fourth stages are the stages for the formation of weathering crust and interior dissolution pore-cave reservoirs, respectively.