期刊文献+
共找到2,229篇文章
< 1 2 112 >
每页显示 20 50 100
Air-combat behavior data mining based on truncation method 被引量:1
1
作者 Yunfei Yin Guanghong Gong Liang Han 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期827-834,共8页
This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-... This paper considers the problem of applying data mining techniques to aeronautical field.The truncation method,which is one of the techniques in the aeronautical data mining,can be used to efficiently handle the air-combat behavior data.The technique of air-combat behavior data mining based on the truncation method is proposed to discover the air-combat rules or patterns.The simulation platform of the air-combat behavior data mining that supports two fighters is implemented.The simulation experimental results show that the proposed air-combat behavior data mining technique based on the truncation method is feasible whether in efficiency or in effectiveness. 展开更多
关键词 air-combat truncation method behavior mining basic fighter maneuvers(BFMs) data mining.
在线阅读 下载PDF
Research on the Evaluation Model of Software Talent Cultivation Based on Multivariant Data Fusion
2
作者 Yin Chen Haoxuan Tang +4 位作者 Lei Zhang Tonghua Su Zhongjie Wang Ruihan Hu Shanli Xie 《计算机教育》 2025年第3期130-137,共8页
This paper proposes a multivariate data fusion based quality evaluation model for software talent cultivation.The model constructs a comprehensive ability and quality evaluation index system for college students from ... This paper proposes a multivariate data fusion based quality evaluation model for software talent cultivation.The model constructs a comprehensive ability and quality evaluation index system for college students from a perspective of engineering course,especially of software engineering.As for evaluation method,relying on the behavioral data of students during their school years,we aim to construct the evaluation model as objective as possible,effectively weakening the negative impact of personal subjective assumptions on the evaluation results. 展开更多
关键词 Quality evaluation model Software talent cultivation behavioral data
在线阅读 下载PDF
Efficient Intelligent E-Learning Behavior-Based Analytics of Student’s Performance Using Deep Forest Model
3
作者 Raed Alotaibi Omar Reyad Mohamed Esmail Karar 《Computer Systems Science & Engineering》 2024年第5期1133-1147,共15页
E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analyt... E-learning behavior data indicates several students’activities on the e-learning platform such as the number of accesses to a set of resources and number of participants in lectures.This article proposes a new analytics systemto support academic evaluation for students via e-learning activities to overcome the challenges faced by traditional learning environments.The proposed e-learning analytics system includes a new deep forest model.It consists of multistage cascade random forests with minimal hyperparameters compared to traditional deep neural networks.The developed forest model can analyze each student’s activities during the use of an e-learning platform to give accurate expectations of the student’s performance before ending the semester and/or the final exam.Experiments have been conducted on the Open University Learning Analytics Dataset(OULAD)of 32,593 students.Our proposed deep model showed a competitive accuracy score of 98.0%compared to artificial intelligence-based models,such as ConvolutionalNeuralNetwork(CNN)and Long Short-TermMemory(LSTM)in previous studies.That allows academic advisors to support expected failed students significantly and improve their academic level at the right time.Consequently,the proposed analytics system can enhance the quality of educational services for students in an innovative e-learning framework. 展开更多
关键词 E-LEARNING behavior data student evaluation artificial intelligence machine learning
在线阅读 下载PDF
Exploring users' within-site navigation behavior:A case study based on clickstream data 被引量:1
4
作者 Tingting JIANG Yu CHI Wenrui JIA 《Chinese Journal of Library and Information Science》 2014年第4期63-76,共14页
Purpose:The goal of our research is to suggest specific Web metrics that are useful for evaluating and improving user navigation experience on informational websites.Design/methodology/approach:We revised metrics in a... Purpose:The goal of our research is to suggest specific Web metrics that are useful for evaluating and improving user navigation experience on informational websites.Design/methodology/approach:We revised metrics in a Web forensic framework proposed in the literature and defined the metrics of footprint,track and movement.Data were obtained from user clickstreams provided by a real estate site’s administrators.There were two phases of data analysis with the first phase on navigation behavior based on user footprints and tracks,and the second phase on navigational transition patterns based on user movements.Findings:Preliminary results suggest that the apartment pages were heavily-trafficked while the agent pages and related information pages were underused to a great extent.Navigation within the same category of pages was prevalent,especially when users navigated among the regional apartment listings.However,navigation of these pages was found to be inefficient.Research limitations:The suggestions for navigation design optimization provided in the paper are specific to this website,and their applicability to other online environments needs to be verified.Preference predications or personal recommendations are not made during the current stage of research.Practical implications:Our clickstream data analysis results offer a base for future research.Meanwhile,website administrators and managers can make better use of the readily available clickstream data to evaluate the effectiveness and efficiency of their site navigation design.Originality/value:Our empirical study is valuable to those seeking analysis metrics for evaluating and improving user navigation experience on informational websites based on clickstream data.Our attempts to analyze the log file in terms of footprint,track and movement will enrich the utilization of such trace data to engender a deeper understanding of users’within-site navigation behavior. 展开更多
关键词 Web navigation User behavior Clickstream data analysis Metrics Resale apartment website
原文传递
Alternative data in fnance and business:emerging applications and theory analysis(review) 被引量:1
5
作者 Yunchuan Sun Lu Liu +5 位作者 Ying Xu Xiaoping Zeng Yufeng Shi Haifeng Hu Jie Jiang Ajith Abraham 《Financial Innovation》 2024年第1期32-63,共32页
In the financial sector,alternatives to traditional datasets,such as financial statements and Securities and Exchange Commission filings,can provide additional ways to describe the running status of businesses.Nontrad... In the financial sector,alternatives to traditional datasets,such as financial statements and Securities and Exchange Commission filings,can provide additional ways to describe the running status of businesses.Nontraditional data sources include individual behaviors,business processes,and various sensors.In recent years,alternative data have been leveraged by businesses and investors to adjust credit scores,mitigate financial fraud,and optimize investment portfolios because they can be used to conduct more in-depth,comprehensive,and timely evaluations of enterprises.Adopting alternative data in developing models for finance and business scenarios has become increasingly popular in academia.In this article,we first identify the advantages of alternative data compared with traditional data,such as having multiple sources,heterogeneity,flexibility,objectivity,and constant evolution.We then provide an overall investigation of emerging studies to outline the various types,emerging applications,and effects of alternative data in finance and business by reviewing over 100 papers published from 2015 to 2023.The investigation is implemented according to application scenarios,including business return prediction,business risk management,credit evaluation,investment risk prediction,and stock prediction.We discuss the roles of alternative data from the perspective of finance theory to argue that alternative data have the potential to serve as a bridge toward achieving high efficiency in financial markets.The challenges and future trends of alternative data in finance and business are also discussed. 展开更多
关键词 Alternative data behavioral data Commercial data Credit evaluation Enterprise management Finance innovation INVESTMENT Market efciency Priceprediction Risk evaluation Sensing data
在线阅读 下载PDF
Using microscopic video data measures for driver behavior analysis during adverse winter weather:opportunities and challenges 被引量:1
6
作者 Ting Fu Sohail Zangenehpour +2 位作者 Paul St-Aubin Liping Fu Luis F.Miranda-Moreno 《Journal of Modern Transportation》 2015年第2期81-92,共12页
This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of... This paper presents a driver behavior analysis using microscopic video data measures including vehicle speed, lane-changing ratio, and time to collision. An analytical framework was developed to evaluate the effect of adverse winter weather conditions on highway driving behavior based on automated (computer) and manual methods. The research was conducted through two case studies. The first case study was conducted to evaluate the feasibility of applying an au- tomated approach to extracting driver behavior data based on 15 video recordings obtained in the winter 2013 at three dif- ferent locations on the Don Valley Parkway in Toronto, Canada. A comparison was made between the automated approach and manual approach, and issues in collecting data using the automated approach under winter conditions were identified. The second case study was based on high quality data collected in the winter 2014, at a location on Highway 25 in Montreal, Canada. The results demonstrate the effectiveness of the automated analytical framework in analyzing driver behavior, as well as evaluating the impact of adverse winter weather conditions on driver behavior. This approach could be applied to evaluate winter maintenance strategies and crash risk on highways during adverse winter weather conditions. 展开更多
关键词 WINTER Video data collection Issues Driver behavior Time to collision Winter roadmaintenance
在线阅读 下载PDF
Analyzing Behavior Differences of Occupied and Non-Occupied Taxi Drivers Using Floating Car Data
7
作者 年光跃 李喆 +1 位作者 朱伟权 孙健 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期682-687,共6页
As the travel purpose of non-occupied taxies is to find new passengers rather than to arrive at the destination, large differences exist in the route choice behavior between the occupied and non-occupied taxies.With t... As the travel purpose of non-occupied taxies is to find new passengers rather than to arrive at the destination, large differences exist in the route choice behavior between the occupied and non-occupied taxies.With the assistance of geographic information system(GIS) and taxi-based floating car data(FCD), this paper investigates the behavior differences between occupied and non-occupied taxi drivers with the same origin and destination. Descriptive statistical indexes from the FCD in Shenzhen, China are explored to identify the route choice characteristics of occupied and non-occupied taxies. Then, a conditional logit model is proposed to model the quantitative relationship between drivers' route choice and the related significant variables. Attributes of the variables related to non-occupied taxies' observed routes are compared with the case of occupied ones. The results indicate that, compared with their counterparts, non-occupied taxi drivers generally pay more attention to choosing arterial roads and avoiding congested segments. Additionally, they are also found less sensitive to fewer traffic lights and shorter travel time. Findings from this research can assist to improve urban road network planning and traffic management. 展开更多
关键词 non-occupied taxies route choice behavior floating car data(FCD) geographic information system(GIS)
原文传递
基于人工智能的大学生学业预警模式研究 被引量:3
8
作者 肖明 余琳 +3 位作者 肖毅 陈锟 周东波 赵亮 《现代电子技术》 北大核心 2025年第8期155-163,共9页
人工智能如何赋能人才培养是新一代信息技术与教育深度融合的重要研究内容,赋能大学生的学业预警是及时发现大学生成长问题、确保其成才的重要手段。为此,提出一种基于人工智能的大学生学业预警模式,以某高校近1 000名大一新生为研究对... 人工智能如何赋能人才培养是新一代信息技术与教育深度融合的重要研究内容,赋能大学生的学业预警是及时发现大学生成长问题、确保其成才的重要手段。为此,提出一种基于人工智能的大学生学业预警模式,以某高校近1 000名大一新生为研究对象,在遵循隐私保护、防止个人隐私泄露的前提下,对所采集的校园网络大数据、上网行为数据、教务数据等进行脱敏处理,运用人工智能的感知、分析与反馈技术来探究大学生的上网等行为与其学业的相关性,构建学业预警模型。结果表明,所研究的学业预警模型能够较好地预测学生学业风险,有助于实现规模化学生群体下的个性化人才培养模式探索,可为人工智能技术的教育教学落地应用建立有效途径。 展开更多
关键词 人工智能赋能 教育大数据 上网行为 学业预警 预警模型 隐私保护
在线阅读 下载PDF
AIS数据中船舶避碰行为提取方法 被引量:1
9
作者 冮龙晖 刘通 +1 位作者 王旭升 谢伟东 《舰船科学技术》 北大核心 2025年第3期141-147,共7页
船舶避碰行为分析对于船舶碰撞风险评估、智能避碰决策、导助航设备研发和船舶交通管理等方面的研究具有重要意义。本文提出一种基于海量AIS时空数据的船舶避碰行为提取方法。该方法包括会遇态势判别、避碰样本提取和避碰行为提取3个模... 船舶避碰行为分析对于船舶碰撞风险评估、智能避碰决策、导助航设备研发和船舶交通管理等方面的研究具有重要意义。本文提出一种基于海量AIS时空数据的船舶避碰行为提取方法。该方法包括会遇态势判别、避碰样本提取和避碰行为提取3个模块,依据避碰规则和航海实践对会遇态势判别和避碰样本提取中的关键参数及判别条件进行确定,通过船舶航行轨迹还原和避碰行为特征参数迭代,识别出表征避碰时机和避碰行为的具体参数。应用实际AIS数据对算法的有效性和准确性进行验证,并将算法提取结果与实际船舶航迹进行对比分析,结果表明该方法能够有效地从AIS数据中提取出船舶会遇和避碰行为数据,可以为后续船舶避碰相关研究提供数据支持。 展开更多
关键词 避碰行为分析 会遇态势 AIS数据
在线阅读 下载PDF
智慧学习环境下的在线学习行为分析 被引量:1
10
作者 赵元棣 刘永欣 于槐松 《科技风》 2025年第3期163-165,共3页
本文基于智慧学习平台的在线教学受到的关注日益增多,分析在线学习现状及相关因素对提升教学质量具有重要意义。首先,通过对智慧学习平台的课程学习数据进行分析,确定学习行为指标的四个分类:学习者基本情况、操作行为、协作行为、问题... 本文基于智慧学习平台的在线教学受到的关注日益增多,分析在线学习现状及相关因素对提升教学质量具有重要意义。首先,通过对智慧学习平台的课程学习数据进行分析,确定学习行为指标的四个分类:学习者基本情况、操作行为、协作行为、问题解决行为;其次,利用主成分分析和聚类分析,确定学习行为与学习效果的正相关性,将学习样本分为积极型和消极型;再次,对比不同环境下的教学效果,发现在线学习在大部分情况下表现优于传统教学;最后,进行学习行为维度与学习成绩的相关性分析,得到影响学习成绩的主要因素为学习时间和学习次数。在此基础上,从学习者、教师等角度提出相应教学建议。 展开更多
关键词 智慧学习平台 在线学习 学习行为分析 数据分析
在线阅读 下载PDF
Analysis of Stopping Behavior at Rural T-Intersections Using Naturalistic Driving Study Data
11
作者 Nicole Oneyear Shauna Hallmark +2 位作者 Amrita Goswamy Raju Thapa Guillermo Basulto-Elias 《Journal of Transportation Technologies》 2023年第2期208-221,共14页
Rural intersections account for around 30% of crashes in rural areas and 6% of all fatal crashes, representing a significant but poorly understood safety problem. Crashes at rural intersections are also problematic si... Rural intersections account for around 30% of crashes in rural areas and 6% of all fatal crashes, representing a significant but poorly understood safety problem. Crashes at rural intersections are also problematic since high speeds on intersection approaches are present which can exacerbate the impact of a crash. Additionally, rural areas are often underserved with EMS services which can further contribute to negative crash outcomes. This paper describes an analysis of driver stopping behavior at rural T-intersections using the SHRP 2 Naturalistic Driving Study data. Type of stop was used as a safety surrogate measure using full/rolling stops compared to non-stops. Time series traces were obtained for 157 drivers at 87 unique intersections resulting in 1277 samples at the stop controlled approach for T-intersections. Roadway (i.e. number of lanes, presence of skew, speed limit, presence of stop bar or other traffic control devices), driver (age, gender, speeding), and environmental characteristics (time of day, presence of rain) were reduced and included as independent variables. Results of a logistic regression model indicated drivers were less likely to stop during the nighttime. However presence of intersection lighting increased the likelihood of full/rolling stops. Presence of intersection skew was shown to negatively impact stopping behavior. Additionally drivers who were traveling over the posted speed limit upstream of the intersection approach were less likely to stop at the approach stop sign. 展开更多
关键词 Naturalistic Driving Study data INTERSECTION Safety RURAL Stopping behavior
在线阅读 下载PDF
行为区分视角下公开数据抓取的反不正当竞争法规制 被引量:3
12
作者 黄武双 邱思宇 《科技与法律(中英文)》 2025年第3期1-13,25,共14页
公开数据是一种兼具公共利益与收集者利益的数据类型,对公开数据的抓取存在着商业利用自由与数据权益保护的冲突。司法实践忽略了抓取行为背后存在的收集行为与商业使用行为的区分,直接将商业使用行为的不正当性扩大到收集行为阶段,基... 公开数据是一种兼具公共利益与收集者利益的数据类型,对公开数据的抓取存在着商业利用自由与数据权益保护的冲突。司法实践忽略了抓取行为背后存在的收集行为与商业使用行为的区分,直接将商业使用行为的不正当性扩大到收集行为阶段,基于反不正当竞争法对数据抓取行为进行规制。公开数据因其公开性质,单独的抓取行为只是数据收集,契合数据流动的本质属性,纯粹是一种市场自由行为,不应予以《反不正当竞争法》规制;抓取(收集)并进行非竞争性商业利用,同样契合数据流动的本质属性,也是市场利用数据的正当行为,不符合《反不正当竞争法》的规制逻辑;只有抓取(收集)并同时存在竞争性商业使用时,抓取行为才侵害了数据收集者的竞争权益,具有不正当性,需要基于《反不正当竞争法》加以规制。 展开更多
关键词 公开数据 抓取行为 不正当竞争
在线阅读 下载PDF
基于多任务Informer模型的船舶轨迹预测及行为识别研究
13
作者 李世刚 刘克中 +3 位作者 陈立家 周乃祺 周阳 黄嘉韬 《中国航海》 北大核心 2025年第3期157-165,共9页
为有效预判航行风险,并为船舶避碰、交通管理等决策提供重要依据,研究了一种基于多任务Informer模型的船舶轨迹预测及行为识别模型。该模型以Informer框架为基础,并引入多任务学习模式,通过设计多任务损失函数将船舶行为识别与轨迹预测... 为有效预判航行风险,并为船舶避碰、交通管理等决策提供重要依据,研究了一种基于多任务Informer模型的船舶轨迹预测及行为识别模型。该模型以Informer框架为基础,并引入多任务学习模式,通过设计多任务损失函数将船舶行为识别与轨迹预测并联训练,解决了AIS数据中船舶行为不准确无法作为模型输入的问题;在模型训练时,并设计基于同方差不确定性的损失函数自适应更新策略,自适应分配两个任务的损失权重。利用太仓航段水域中的真实AIS数据进行试验中多任务的Informer船舶轨迹预测模型在轨迹预测中的损失比LSTM和Informer模型分别降低了40.2%和14.7%;在行为识别任务中多任务模型的识别准确率比LSTM和Informer模型分别提升了11.7%和5.95%。表明了多任务模型能在有效提升船舶轨迹预测的性能的同时实现船舶对行为的准确识别。 展开更多
关键词 轨迹预测 行为识别 AIS数据 Informer模型 多任务学习
在线阅读 下载PDF
基于改进Apriori算法的不良驾驶行为关联分析
14
作者 韩锐 于长海 +1 位作者 丁庆国 石朋炜 《现代电子技术》 北大核心 2025年第14期50-56,共7页
不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶... 不良驾驶行为的复杂化趋势会对道路交通安全构成严重威胁。为挖掘不良驾驶行为的潜在规律,文章通过车载诊断系统(OBD)采集哈尔滨乘用车早晚高峰时段的行驶数据,利用Python数据处理平台识别超速、急变速、急转弯及快速变道共4种不良驾驶行为。基于行为数据集,提出一种改进的Apriori关联规则挖掘算法。引入粒子群优化(PSO)算法优化Apriori算法中的支持度与置信度两个重要参数,并使用哈希映射表提高Apriori算法的运行效率。实验结果表明,改进Apriori算法在两种数据集上的运行时间较传统Apriori算法分别提高8.26%、9.27%。关联结果显示,不良驾驶行为并非单独存在,其中急转弯、快速变道、急加速关联性最强,超速行为与急变速次之。该研究能够为驾驶风格量化分析提供参考,可应用于交通事故主动预警系统。 展开更多
关键词 驾驶安全 不良驾驶行为 数据挖掘 关联分析 改进Apriori算法 粒子群优化算法
在线阅读 下载PDF
数智型员工关系管理对算法公民行为的影响研究——数据向善与工作繁荣的作用 被引量:1
15
作者 赵富强 许通 +1 位作者 陈耘 李五一 《珞珈管理评论》 2025年第2期16-32,共17页
随着社会步入数智经济时代,员工与组织间雇佣关系发生了巨大转变,如何构建和谐可持续的员工关系成为组织亟待解决的关键问题,因而与数字、智能、算法相结合的员工关系管理——数智型员工关系管理逐渐受到学界与业界的广泛关注。基于此,... 随着社会步入数智经济时代,员工与组织间雇佣关系发生了巨大转变,如何构建和谐可持续的员工关系成为组织亟待解决的关键问题,因而与数字、智能、算法相结合的员工关系管理——数智型员工关系管理逐渐受到学界与业界的广泛关注。基于此,本研究旨在科学界定数智型员工关系管理的概念内涵与维度结构,开发相应测量工具,同时基于工作要求-资源模型和社会信息加工理论,探究数智型员工关系管理对员工算法公民行为的工作繁荣机制,同时考察数据向善的边界条件作用。针对315份多时点有效样本的实证研究发现:(1)数智型员工关系管理对算法公民行为有显著正向影响;(2)工作繁荣在数智型员工关系管理与算法公民行为间有显著中介作用;(3)数据向善正向调节数智型员工关系管理对工作繁荣的直接作用及其通过工作繁荣对算法公民行为的间接作用,数据向善水平越高,其直接与间接作用越强。本研究为数智经济时代企业员工关系管理改善提供理论依据与决策借鉴。 展开更多
关键词 数智型员工关系管理 算法公民行为 工作繁荣 数据向善
在线阅读 下载PDF
基于联邦学习的工控机业务行为分布式安全检测
16
作者 李健俊 王万江 +4 位作者 陈鹏 张帅 张利宏 李威 董惠良 《计算机集成制造系统》 北大核心 2025年第3期841-854,共14页
工业互联网时代,不同厂商希望通过共享本地数据得到更完善的安全检测模型,但接入互联网后本地数据更易遭到窃取,而联邦学习可以通过交换模型参数的方式达到数据隐私保护和共享的目的。现有针对工业计算机的安全检测方法还存在一些缺陷:... 工业互联网时代,不同厂商希望通过共享本地数据得到更完善的安全检测模型,但接入互联网后本地数据更易遭到窃取,而联邦学习可以通过交换模型参数的方式达到数据隐私保护和共享的目的。现有针对工业计算机的安全检测方法还存在一些缺陷:①很少考虑从业务行为方面提取特征模型;②难以解决本地数据被篡改而导致的模型偏移问题;③检测系统前端检测、后端分析的网络结构会增加从后端管理网到前端控制网之间的通信通道,从而给管理网引入新的攻击路径。针对上述问题,提出基于联邦学习的工控机业务行为分布式安全检测方法,包括工控机业务行为特征检测方法、基于信息熵分配权重的联邦学习模型聚合方法、基于转发硬件的数据传输重构方法;能够提高针对工控应用协议的攻击识别准确率,减轻工业控制计算机数据污染导致的模型偏移,防止攻击者利用管理网的分析后台进行远程攻击;实现了原型系统,并在卷接设备控制系统中进行了实验验证,与采用非业务行为建模的相关方法相比,所提方法对中间人攻击和远程攻击检测准确率分别提高了17%和24%;在自有和公开数据集上的验证结果表明,方法比常用的3种聚合算法的准确率提高了0.6%~2.4%,遭到数据毒化攻击后,所提方法准确率下降为0.6%和1.1%,而其他算法下降了1.1%~7.5%和1.5%~4.5%;并能够防止攻击者利用管理网检测后台漏洞发起向控制网的远程攻击,减小攻击面。 展开更多
关键词 工业控制系统 业务行为检测 联邦学习 数据毒化 攻击过滤
在线阅读 下载PDF
基于定向视觉追踪的公共空间多主体行为计算分析方法
17
作者 闫超 刘思言 +1 位作者 何善叔 徐磊青 《风景园林》 北大核心 2025年第5期29-36,共8页
【目的】针对儿童人群的行为量化分析是城市公共空间研究的新需求。构建基于定向视觉追踪的多主体行为计算分析方法,可以弥补常规方法难以甄别不同人群类型的问题,揭示儿童、家长与空间的协同交互规律,支撑面向具体人群行为规律的空间... 【目的】针对儿童人群的行为量化分析是城市公共空间研究的新需求。构建基于定向视觉追踪的多主体行为计算分析方法,可以弥补常规方法难以甄别不同人群类型的问题,揭示儿童、家长与空间的协同交互规律,支撑面向具体人群行为规律的空间优化设计。【方法】以公共空间多主体行为交互规律为研究对象,采用“技术研究—方法构建—实例论证”的研究路径,构建定向目标行人追踪的技术框架,探究针对不同人群交互规律的计算分析与可视化方法,以儿童游憩公共空间为例,验证多主体行为计算分析方法。【结果】通过对中心放射型和线性带状两类儿童游憩空间的比较分析,揭示出多主体行为计算方法的3个关键应用效果:基于人体比例特征的追踪技术可以在公共空间尺度实现目标儿童人群的识别;基于聚集程度、静态使用率、动态使用率的计算分析可以系统解析成人与儿童的交互关系;基于可视化热力图的交叉比较分析可以揭示空间特征对多主体交互行为的干预原理。【结论】多主体行为计算分析方法可为多种人群交互的空间行为研究提供支撑,应用于复杂人群场景的公共空间使用后评估和优化设计。 展开更多
关键词 风景园林 环境行为 行为性能 数据可视化分析 计算机视觉 儿童游憩场所
在线阅读 下载PDF
学习科学视域下的学习分析——发展历史、关键方法与未来展望
18
作者 孙丹 《杭州师范大学学报(自然科学版)》 2025年第5期509-515,共7页
学习分析作为学习科学和教育数据科学的一个新兴领域,可利用数据科学及分析技术将海量教育数据转化成有意义的、可指导行动的信息,从而为教师和学生提供反馈信息以提升教育质量.学习分析技术在教育中的应用前景广阔,但仍然存在隐私、准... 学习分析作为学习科学和教育数据科学的一个新兴领域,可利用数据科学及分析技术将海量教育数据转化成有意义的、可指导行动的信息,从而为教师和学生提供反馈信息以提升教育质量.学习分析技术在教育中的应用前景广阔,但仍然存在隐私、准确性等诸多挑战.文章深入梳理了学习科学视域下的学习分析发展历史、概念框架与经典模型,以及包含社交网络分析、内容分析、话语分析等在内的典型学习分析方法,并从3个方面探究了学习科学视域下学习分析的未来展望,以期更好地发挥学习分析在教育领域的积极作用,推动教育信息化的进一步发展. 展开更多
关键词 学习科学 学习分析 学习行为 数据挖掘
在线阅读 下载PDF
基于语音与行为数据分析的体质健康监测可穿戴设备研究
19
作者 王导利 《自动化与仪器仪表》 2025年第9期265-269,共5页
针对传统可穿戴设备语音交互质量低,导致语音与行为数据分析效果不佳的问题,提出设计一个基于SONET-SVM的语音与行为数据分析方法。首先,构建一个体质健康监测系统,并采用SONET模型进行语音增强;然后采用压力采集鞋垫采集监测对象的行... 针对传统可穿戴设备语音交互质量低,导致语音与行为数据分析效果不佳的问题,提出设计一个基于SONET-SVM的语音与行为数据分析方法。首先,构建一个体质健康监测系统,并采用SONET模型进行语音增强;然后采用压力采集鞋垫采集监测对象的行为数据;最后将该行为数据输入至支持向量机(SVM)中,通过其实现足底关键点位特征分类和行为特征分析。结果表明,基于SONET的语音增强算法的语音识别准确率为98.73%,本算法的准确率比传统的DSB、FSB和MVDR波束形成算法分别高了13.94%、10.55%和6.51%。SVM分类模型的步态行为数据分类准确率为99.52%,均高于KNN、CNN分类模型。由此证明,将基于SONET-SVM的语音与行为数据分析方法应用于可穿戴设备后,可实现监测对象体质健康准确监测,具备实用性和有效性。 展开更多
关键词 语音识别 行为数据分析 体质健康监测 可穿戴设备 SVM分类器
原文传递
科学数据共享行为影响因素元综合研究
20
作者 支凤稳 史洁 《图书馆学研究》 北大核心 2025年第2期2-12,共11页
系统综述科学数据共享行为的影响因素,揭示科学数据共享行为的内在机理,促进我国科学数据共享理论与实践水平提升。采用元综合方法梳理相关文献,使用循证图书馆学对纳入文献进行批判性评估,基于编码进行批判性解释综合。得出97个初始概... 系统综述科学数据共享行为的影响因素,揭示科学数据共享行为的内在机理,促进我国科学数据共享理论与实践水平提升。采用元综合方法梳理相关文献,使用循证图书馆学对纳入文献进行批判性评估,基于编码进行批判性解释综合。得出97个初始概念,31个范畴和10个主范畴,构建由主体、技术保障、环境、价值实现4个维度组成的影响因素框架,并厘清各维度之间的关系。最后,从各主体视角提出共享行为的提升对策,为后续更深入研究提供一定参考。 展开更多
关键词 科学数据 共享行为 元综合
原文传递
上一页 1 2 112 下一页 到第
使用帮助 返回顶部